3D technologies in monitoring forest structures M ihai-daniel ni ță — презентация
logo
3D technologies in monitoring forest structures M ihai-daniel ni ță
  • 3D technologies in monitoring forest structures M ihai-daniel ni ță
  • TIMBER worlDwide
  • 3D technologies in monitoring forest structures M ihai-daniel ni ță
  • WHY?
  • People are looking for simple information to ingest
  • The managers and people in the field are connected with ground truth
  • SO, forest managers (and mangers in general) are interested more in simple data, easy to read, fascinatingly beautiful... …On a map …on their phone
  • IN THE MODERN ERA we came out with pixels
  • BUT WE ARE LIVING IN A 3D WORLD… NOWADAYS WE CAME OUT WITH voxels
  • What about forests?
  • ForesterS : Why to use 3d data? We’ve got bitterlich !!! Is accurate enough…
  • 3d scaNners – change in paradigm
  • Mobile Solution
  • Solution
  • Principles of functioning
  • Principles of functioning
  • Example GEOSLAM Horizon 10 minutes = 1.5ha
  • Tripod solution – for noise under 1cm
  • Example – FARO S70 – 5hours 1 ha
  • OK. So we have a very nice pointcloud …
  • Going back to the questions of forest managers:
  • Semi- Automatic (manual) Tree Extraction and Virtual Measurements from LIDAR Imagery
  • 3D technologies in monitoring forest structures M ihai-daniel ni ță
  • 3D technologies in monitoring forest structures M ihai-daniel ni ță
  • 3D technologies in monitoring forest structures M ihai-daniel ni ță
  • 3D technologies in monitoring forest structures M ihai-daniel ni ță
  • 3D technologies in monitoring forest structures M ihai-daniel ni ță
  • 3D technologies in monitoring forest structures M ihai-daniel ni ță
  • 3D technologies in monitoring forest structures M ihai-daniel ni ță
  • VIRTSILV portal Automatic Tree Extraction and Virtual Measurements from LIDAR Imagery
  • 3D technologies in monitoring forest structures M ihai-daniel ni ță
  • Data entry
  • 3D technologies in monitoring forest structures M ihai-daniel ni ță
  • Processing chain
  • settings
  • results
  • Reconstructing Tree characteristics - trunk
  • Reconstructing Tree characteristics trunk and branches
  • From tree to stand level – portal reports
  • 3D technologies in monitoring forest structures M ihai-daniel ni ță
  • New development Connecting with satellite data
  • Connecting to satellite data
  • Connecting to satellite data
  • Connecting to satellite data
  • FIRST STEPS in building the service estimating the standing volume at pixel level (HE YIN – University of Wisconsin)
  • Comparing with the field data – FMP1
  • Comparing with the field data – FMP1
  • Comparing with the field data – FMP2
  • Comparing with the field data – FMP2
  • CONCLUSION
  • THANK you for your attention!
1/51

Первый слайд презентации

3D technologies in monitoring forest structures M ihai-daniel ni ță

Изображение слайда

Слайд 2: TIMBER worlDwide

Total worldwide processed wood is 3.5 Billions cubic meters annually (FAO). Total certified volume of FSC (Forest Stewardship Council) wood produced annual is 300 MM of total world wood production Approx.. 10% of the timber has certified origin

Изображение слайда

Слайд 3

THE FACT is that we don ’t have a real estimation of the standing volume in the forests worldwide WHY ? Liu et al.,2017

Изображение слайда

Слайд 4: WHY?

Many forest spaces are complex and difficult to access. Precise mapping that take readings from forests are often made with huge time allocation and considerable costs, Forestry professionals want to access user-friendly technology

Изображение слайда

Слайд 5: People are looking for simple information to ingest

Изображение слайда

Слайд 6: The managers and people in the field are connected with ground truth

Изображение слайда

Слайд 7: SO, forest managers (and mangers in general) are interested more in simple data, easy to read, fascinatingly beautiful... …On a map …on their phone

Изображение слайда

Слайд 8: IN THE MODERN ERA we came out with pixels

In digital imaging, a pixel is a physical point in a raster image, or the smallest addressable element in an all points addressable display device

Изображение слайда

Слайд 9: BUT WE ARE LIVING IN A 3D WORLD… NOWADAYS WE CAME OUT WITH voxels

A voxel represents a value on a regular grid in three-dimensional space. The word  voxel  originated by analogy with the word "pixel", with  vo  representing "volume" and  el  representing "element" 3D rendering of a µCT scan of a leaf piece, resolution circa 40 µm/voxel when viewed at the full size

Изображение слайда

Слайд 10: What about forests?

We are fitting complex tree shapes using a diameter and a height – both affected by errors Leading to errors up to more or less 50%

Изображение слайда

Слайд 11: ForesterS : Why to use 3d data? We’ve got bitterlich !!! Is accurate enough…

Based on Kramer H. and A. Akca. 1995. Leitfaden zur Waldmesslehre. 3rd edition. J.D. Sauerländers Verlag, Frankfurt. 266p.

Изображение слайда

Слайд 12: 3d scaNners – change in paradigm

North America 3D scanning market size, by application, 2012-2024 (USD Million)

Изображение слайда

Слайд 13: Mobile Solution

Lightweight, handheld laser scanner which is highly mobile, simple to operate and can be used by anyone. Need a v ersatile technology which is adaptable to any environment, especially complex and enclosed spaces, without the need for GNSS.

Изображение слайда

Слайд 14: Solution

We tested GEOSLAM HORIZON performance in the forest: produces 10 million points/ minute laser range is 100 m in 10 minnutes scans approximately 1 ha of forest

Изображение слайда

Слайд 15: Principles of functioning

GeoSLAM’s algorithm utilises data from a Lidar sensor and inertial measurement unit (IMU). The IMU is used to estimate an initial position and create a point cloud from which surface elements are extracted to represent the unique shapes within the point cloud. The trajectory is then calculated for the next sweep of data using the IMU and surface elements extracted again in the same way. www.societyofrobots.com

Изображение слайда

Слайд 16: Principles of functioning

What is SLAM? In robotic mapping and navigation, S imultaneous L ocalization A nd M apping (SLAM) is the computational problem of constructing or updating a map of an unknown environment while simultaneously keeping track of an agent's location within it.

Изображение слайда

Слайд 17: Example GEOSLAM Horizon 10 minutes = 1.5ha

Изображение слайда

Слайд 18: Tripod solution – for noise under 1cm

Liang et al 2018

Изображение слайда

Слайд 19: Example – FARO S70 – 5hours 1 ha

Изображение слайда

Слайд 20: OK. So we have a very nice pointcloud …

Изображение слайда

Слайд 21: Going back to the questions of forest managers:

What is the standing volume? What is the harvesting possibility and technology Selective logging for maintaining diverse structure for biodiversity? Can I get it in real-time? Etc.

Изображение слайда

Слайд 22: Semi- Automatic (manual) Tree Extraction and Virtual Measurements from LIDAR Imagery

Изображение слайда

Слайд 23

Segmentation Tree by tree segmentation and labeling – 1141 trees for Demo Site in Finland

Изображение слайда

Слайд 24

Digital Elevation Model Digital elevation model for estimating the correct Breast Height at 1.3

Изображение слайда

Слайд 25

C leaning tree models - Manually We cleared the stem area from 0 to 2 m of branches and other neighboring trees which were not detected automatically. Time? Don’t ask! Point cloud fusion with drone – adding tip of the crown Initial cloud from scanner Debranching Clearing the DBH area Reattaching the crown

Изображение слайда

Слайд 26

Extracting tree characteristics - automatically Extracting data for every tree: XYZ position, DBH, Height, Crown 3D Forest Open Source Software

Изображение слайда

Слайд 27

Scan – DBH and position

Изображение слайда

Слайд 28

Tree characteristics DBH computed by Least Square Regression X,Y,Z coordinate of tree position

Изображение слайда

Слайд 29

Demo site 170 To produce this map took a lot of time and energy

Изображение слайда

Слайд 30: VIRTSILV portal Automatic Tree Extraction and Virtual Measurements from LIDAR Imagery

Изображение слайда

Слайд 31

The technology is original and was developed and tested in Romania. https://webgis-mapping.ro

Изображение слайда

Слайд 32: Data entry

Figure 1. LIDAR data set. Raw Data Point Cloud

Изображение слайда

Слайд 33

Figure 2. LIDAR data set. Ground and off-ground Birdseye view

Изображение слайда

Слайд 34: Processing chain

Изображение слайда

Слайд 35: settings

All the software modules behind the process chain are customizable, by means of a series of parameters. By carefully choosing the proper values for the parameters, one can maximize the performances of the system for any type of forest. Figure 4. Main control panel, with 18 of the most important parameters of the system. The user must be well trained for a good usage of the panel. All the parameters are kept inside predefined intervals of variation.

Изображение слайда

Слайд 36: results

Raw tree extraction for the scene in Figure 1, using the initial data for representation. There were discovered 3 50 potential trees. The bright green spots from the bottom of the trunks mark the intersection with the ground level.

Изображение слайда

Слайд 37: Reconstructing Tree characteristics - trunk

Comparison between raw tree extraction and the mathematical model of the same trunk. LEFT: XZ view, RIGHT: YZ view.

Изображение слайда

Слайд 38: Reconstructing Tree characteristics trunk and branches

Изображение слайда

Слайд 39: From tree to stand level – portal reports

Изображение слайда

Слайд 40

From tree to stand level – portal reports

Изображение слайда

Слайд 41: New development Connecting with satellite data

Изображение слайда

Слайд 42: Connecting to satellite data

Trees with unique ID in the field (left) and the corresponding point clouds (right) generated with TLS (Terrestrial Laser Scanner) Individual tree point clouds and accurate measurement of location, DBH and tree stem curvature

Изображение слайда

Слайд 43: Connecting to satellite data

Tree position on VHR satellite image (WorldView3) – source Google Satellite

Изображение слайда

Слайд 44: Connecting to satellite data

Extrapolating data from Terrestrial Laser Scanner using RS data

Изображение слайда

Слайд 45: FIRST STEPS in building the service estimating the standing volume at pixel level (HE YIN – University of Wisconsin)

Extrapolating data from Terrestrial Laser Scanner using RS data Classification was performed by using a pixel-based supervised random forest (RF) machine learning algorithm (MLA) executed on the Google Earth Engine (GEE) cloud computing platform

Изображение слайда

Слайд 46: Comparing with the field data – FMP1

Standing tree volume map overlap with forest compartment map

Изображение слайда

Слайд 47: Comparing with the field data – FMP1

Standing tree volume map overlap with forest compartment map

Изображение слайда

Слайд 48: Comparing with the field data – FMP2

Standing tree volume map overlap with forest compartment map

Изображение слайда

Слайд 49: Comparing with the field data – FMP2

Standing tree volume map overlap with forest compartment map

Изображение слайда

Слайд 50: CONCLUSION

Изображение слайда

Последний слайд презентации: 3D technologies in monitoring forest structures M ihai-daniel ni ță: THANK you for your attention!

Изображение слайда

Похожие презентации

Ничего не найдено