Первый слайд презентации: Метод Монте-Карло
Выполнил: студент 723 группы Сонин Андрей Руководитель: Метод Монте-Карло
Слайд 3
Методы Монте-Карло – это численные методы решения математических задач (систем алгебраических, дифференциальных, интегральных уравнений.
Слайд 4
Первое упоминание в 1873 Холлом при организации стохастического процесса экспериментального определения числа путём бросания иглы на лист линованной бумаги. 1940-е годы – Дж. Фон Нейман – моделирование траекторий нейтронов 1949 год – систематизация Н.Метрополисом и С.Уламом, решение линейных интегральных уравнений (статья «Метод Монте-Карло»)
Слайд 5
В 1950-х годах метод использовался для расчётов при разработке водородной бомбы. Основные заслуги в развитии метода в это время принадлежат сотрудникам лабораторий ВВС США. В 1970-х годах в новой области математики — теории вычислительной сложности было показано, что существует класс задач, сложность (количество вычислений, необходимых для получения точного ответа) которых растёт с размерностью задачи экспоненциально. В настоящее время основные усилия исследователей направлены на создание эффективных Монте-Карло алгоритмов различных физических, химических и социальных процессов для параллельных вычислительных систем.
Слайд 6
Основная идея методов состоит в создании определенной последовательности псевдослучайных чисел, моделирующих тот или иной эффект. Для решения задачи по методам Монте-Карло прежде всего строят вероятностную модель, представляют искомую величину, например многомерный интеграл.
Слайд 7
Моделирование случайных величин с заданными распределениями осуществляется путём преобразования одного или нескольких независимых значений случайного числа a, распределённого равномерно в интервале (0,1). Последовательности «выборочных» значений a обычно получают на компьютере с помощью теоретико-числовых алгоритмов. Такие числа называются «псевдослучайными» Генератор псевдослучайных чисе л (ГПСЧ, PRNG ) — алгоритм, генерирующий последовательность чисел, элементы которой почти независимы друг от друга и подчиняются заданному распределению.
Слайд 8
Общая схема метода Монте-Карло основана на Центральной предельной теореме теории вероятности, утверждающей, что случайная величина, равная сумме большого количества N произвольных случайных величин с одинаковыми математическими ожиданиями m и дисперсиями, всегда распределена по нормальному закону с математическим ожиданием и дисперсией..
Слайд 9
Общие свойства методов : абсолютная сходимость к решению, тяжёлая зависимость погрешности от числа испытаний (для уменьшения погрешности на порядок, необходимо увеличить количество испытаний на два порядка); основным методом уменьшения погрешности является максимальное уменьшение дисперсии, другими словами, максимально приблизить плотность вероятности p ( x ) случайной величины к математической формулировке задачи или физике моделируемого явления; простая структура вычислительного алгоритма ( N раз повторяющиеся однотипные вычисления реализаций случайной величины); конструкция случайной величины может основываться на физической природе процесса и не требовать обязательной, как в регулярных методах, формулировки уравнения, что для современных проблем становится всё более актуальным.
Слайд 10
В демографии все большее распространение получают имитационные модели, представляющие собой стохастические дискретные микромодели, в которых изменение демографического состояния индивида или другие демографические единицы моделируется методом статистических испытаний - методом Монте-Карло Имитационные модели позволяют лучше учесть причинно-следственной связи, возникающие в демографическом процессе, включить в рассмотрение большое число поведенческих факторов, которые нельзя учесть в макромоделях Имитационные модели призваны решать ту же задачу, что и поиск значений демометрических функций - описать общую закономерность изменения интенсивности демографических событий с возрастом
Последний слайд презентации: Метод Монте-Карло
Имитационная модель брачной рождаемости выделяет, например, такие события, как вступление в брак (с этого начинается функционирование модели), зачатие, с учётом его желательности для семьи и используемой контрацепции, вынашивание, рождение живого или мёртвого ребёнка, период послеродовой стерильности и т. д. Вероятности и их распределения могут рассматриваться как функции социальных, экономических и других переменных. После описания модели жизнь индивида или семьи прослеживается от начала до конца, причём событие принимается наступившим или не наступившим в зависимости от значений случайных чисел.