МЕХАНИЗМ МЫШЕЧНОГО СОКРАЩЕНИЯ — презентация
logo
МЕХАНИЗМ МЫШЕЧНОГО СОКРАЩЕНИЯ
  • МЕХАНИЗМ МЫШЕЧНОГО СОКРАЩЕНИЯ
  • МЕХАНИЗМ МЫШЕЧНОГО СОКРАЩЕНИЯ
  • МЕХАНИЗМ МЫШЕЧНОГО СОКРАЩЕНИЯ
  • МЕХАНИЗМ МЫШЕЧНОГО СОКРАЩЕНИЯ
  • МЕХАНИЗМ МЫШЕЧНОГО СОКРАЩЕНИЯ
  • ВОЗМОЖНОСТИ РЕГЕНЕРАЦИИ СКЕЛЕТНОЙ МЫШЕЧНОЙ ТКАНИ
  • СТРОЕНИЕ СКЕЛЕТНОЙ МЫШЦЫ КАК ОРГАНА
  • ТИПЫ МЫШЕЧНЫХ ВОЛОКОН
  • СЕРДЕЧНАЯ МЫШЕЧНАЯ ТКАНЬ
  • ТИПЫ КАРДИОМИОЦИТОВ
  • МЕХАНИЗМ МЫШЕЧНОГО СОКРАЩЕНИЯ
  • МЕХАНИЗМ МЫШЕЧНОГО СОКРАЩЕНИЯ
  • МЕХАНИЗМ МЫШЕЧНОГО СОКРАЩЕНИЯ
  • МЕХАНИЗМ МЫШЕЧНОГО СОКРАЩЕНИЯ
  • МЕХАНИЗМ МЫШЕЧНОГО СОКРАЩЕНИЯ
  • МЕХАНИЗМ МЫШЕЧНОГО СОКРАЩЕНИЯ
  • МЕХАНИЗМ МЫШЕЧНОГО СОКРАЩЕНИЯ
  • Особенности строения секреторных кардиомиоцитов
  • РЕГЕНЕРАЦИЯ СЕРДЕЧНОЙ МЫШЕЧНОЙ ТКАНИ
  • ГЛАДКАЯ МЫШЕЧНАЯ ТКАНЬ
  • МЕХАНИЗМ МЫШЕЧНОГО СОКРАЩЕНИЯ
  • МЕХАНИЗМ МЫШЕЧНОГО СОКРАЩЕНИЯ
  • МЕХАНИЗМ МЫШЕЧНОГО СОКРАЩЕНИЯ
  • МЕХАНИЗМ МЫШЕЧНОГО СОКРАЩЕНИЯ
  • МЕХАНИЗМ МЫШЕЧНОГО СОКРАЩЕНИЯ
  • МЕХАНИЗМ МЫШЕЧНОГО СОКРАЩЕНИЯ
  • МЕХАНИЗМ МЫШЕЧНОГО СОКРАЩЕНИЯ
  • МЕХАНИЗМ МЫШЕЧНОГО СОКРАЩЕНИЯ
  • МЕХАНИЗМ МЫШЕЧНОГО СОКРАЩЕНИЯ
  • Регенерация гладкой мышечной ткани
  • НЕРВНАЯ ТКАНЬ
  • МЕХАНИЗМ МЫШЕЧНОГО СОКРАЩЕНИЯ
  • МЕХАНИЗМ МЫШЕЧНОГО СОКРАЩЕНИЯ
  • Хроматофильная субстанция (субстанция Ниссля) в мультиполярных нейронах спинного мозга. Окраска по Нисслю
  • МЕХАНИЗМ МЫШЕЧНОГО СОКРАЩЕНИЯ
  • Нейрофибриллы в нейронах передних рогов спинного мозга. Окраска – импрегнация серебром.
  • МЕХАНИЗМ МЫШЕЧНОГО СОКРАЩЕНИЯ
  • Глиоциты ганглия (мантийные глиоциты) в спинно-мозговом узле. Окр.: Г.-Э.
  • МЕХАНИЗМ МЫШЕЧНОГО СОКРАЩЕНИЯ
  • МЕХАНИЗМ МЫШЕЧНОГО СОКРАЩЕНИЯ
  • Миелиновые нервные волокна (расщепленный препарат седалищного нерва). Окраска осмиевой кислотой.
  • Миелиновые нервные волокна
  • МЕХАНИЗМ МЫШЕЧНОГО СОКРАЩЕНИЯ
  • МЕХАНИЗМ МЫШЕЧНОГО СОКРАЩЕНИЯ
  • МЕХАНИЗМ МЫШЕЧНОГО СОКРАЩЕНИЯ
  • Безмиелиновое нервное волокно (расщепленный препарат селезеночного нерва). Окр.: гем.-эозин.
  • Безмиелиновое нервное волокно
  • СКЕЛЕТНЫЕ ТКАНИ
  • Классификация хрящевых тканей
  • МЕХАНИЗМ МЫШЕЧНОГО СОКРАЩЕНИЯ
  • Хрящевые ткани
  • Клетки
  • МЕХАНИЗМ МЫШЕЧНОГО СОКРАЩЕНИЯ
  • Матрикс
  • Надхрящница
  • Дегенеративные изменения
  • Эластический хрящ
  • эластический хрящ
  • Волокнистый хрящ
  • Локализация волокнистого хряща
  • КОСТНЫЕ ТКАНИ
  • МЕХАНИЗМ МЫШЕЧНОГО СОКРАЩЕНИЯ
  • Клетки костной ткани
  • остеобласты
  • остеокласты
  • Локализация остеокластов:
  • МЕХАНИЗМ МЫШЕЧНОГО СОКРАЩЕНИЯ
  • МЕХАНИЗМ МЫШЕЧНОГО СОКРАЩЕНИЯ
  • Костный матрикс
  • Неорганические вещества матрикса
  • Органический компонент
  • МЕХАНИЗМ МЫШЕЧНОГО СОКРАЩЕНИЯ
  • МЕХАНИЗМ МЫШЕЧНОГО СОКРАЩЕНИЯ
  • МЕХАНИЗМ МЫШЕЧНОГО СОКРАЩЕНИЯ
  • Губчатое костное вещество
  • МЕХАНИЗМ МЫШЕЧНОГО СОКРАЩЕНИЯ
  • МЕХАНИЗМ МЫШЕЧНОГО СОКРАЩЕНИЯ
  • МЕХАНИЗМ МЫШЕЧНОГО СОКРАЩЕНИЯ
  • МЕХАНИЗМ МЫШЕЧНОГО СОКРАЩЕНИЯ
  • МЕХАНИЗМ МЫШЕЧНОГО СОКРАЩЕНИЯ
1/80

Первый слайд презентации: МЕХАНИЗМ МЫШЕЧНОГО СОКРАЩЕНИЯ

Общепринятой теорией является модель мышечного сокращения, предложенная Х.Хаксли (в 1954 г.). Это теория скольжения нитей. Суть этой теории в следующем: нервный импульс проходит по нервному волокну и передаётся на плазмолемму мышечного волокна; электрический импульс идёт по Т-трубочке вглубь мышечного волокна и передаётся на лежащие рядом Т-цистерны СПР; мембраны СПР после деполяризации становятся проницаемыми для ионов; ионы кальция выходят из Т-цистерны, связываются с молекулами Т nC ;

Изображение слайда

Слайд 2

при связывании ионов кальция изменяется конфигурация тропонин-тропомиозинового комплекса и на актиновых филаментах и открываются активные центры для связывания головок миозина (которые в состоянии расслабления были закрыты TnI ); головка миозина связывается с актином, а АТФ расщепляется до АДФ, давая энергию для движения миозиновой головки; головки изгибаются в шарнирных областях и создают тянущиеся усилия; это вызывает скольжение тонких нитей между толстыми → тонкие нити более глубоко вдвигаются в А-диск.

Изображение слайда

Слайд 3

Скользящие тонкие нити тянут за собой Z - линии, вызывая сокращение длины саркомера

Изображение слайда

Слайд 4

Длина филаментов при сокращении не изменяется, но поскольку актиновые филаменты заходят глубже между миозиновыми филаментами: длина И-дисков уменьшается; длина Н-полоски уменьшается, хотя длина А-диска остается неизменной; Z -линии сближаются и уменьшается протяженность саркомера в целом

Изображение слайда

Слайд 5

Отдельное мышечное сокращение является результатом сотен циклов образования и разъединения мостиков. Активное сокращение, которое приводит к полному взаимному перекрыванию между тонкими и толстыми филаментами, продолжается до тех пор, пока не будут удалены ионы Са. При отсутствии нервных импульсов ионы кальция вновь откачиваются в СПР, и тропонин-тропомиозиновый комплекс вновь закрывает участки связывания миозина на актине.

Изображение слайда

Скелетная мышечная ткани способна регенерировать как на внутриклеточном уровне (образование в миофибриллах новых саркомеров, новых органелл), так и на клеточном уровнях. Клеточная регенерация происходит благодаря активации миосателлитоцитов вблизи зоны травмы мышечных волокон. Миосателлитоциты образуют миобласты, которые быстро делятся, сливаются друг с другом и формируют мышечные трубочки. Мышечные трубочки постепенно превращаются в полноценные мышечные волокна.

Изображение слайда

Мышца состоит из множества мышечных волокон, связанных в единое целое соединительной тканью. Между мышечными волокнами лежат тонкие прослойки рыхлой волокнистой соединительной ткани, которая называется эндомизием. Несколько мышечных волокон (от 10 до 100) окружены более толстыми прослойками рыхлой волокнистой соединительной ткани – перимизием. В эндомизии и перимизии проходят кровеносные сосуды, питающие мышцу и нервные волокна. Снаружи мышца покрыта оболочкой из плотной волокнистой соединительной ткани - эпимизием.

Изображение слайда

Выделяют три основных типа мышечных волокон: I тип – красные мышечные волокна. Это медленные тонические мышечные волокна: они могут сокращаться в течение длительного времени, но медленно. Красные мышечные волокна имеют небольшой диаметр, содержат относительно тонкие миофибриллы, много митохондрий, имеют высокую активность окислительно-восстановительных ферментов и много липидных включений. Красный цвет волокна связан с тем, что в саркоплазме этих волокон очень много белка миоглобина. Содержат много миосателлитоцитов и кровеносных сосудов. II В тип – белые мышечные волокна. Это быстрые тетанические мышечные волокна: они способны вызывать сокращения большой силы, но быстро утомляются. Характеризуются большим диаметром, сильным развитием миофибрилл, меньшим количеством митохондрий и запасами питательных веществ в виде гликогена. Миоглобина в саркоплазме мало. В волокнах низкая активность окислительных ферментов и, напротив, высокая активность гликолитических ферментов. Кровоснабжение относительно слабое. II А тип – промежуточный тип мышечных волокон. Занимают и в структурном, и в функциональном отношении среднее положение между красными и белыми мышечными волокнами.

Изображение слайда

Слайд 9: СЕРДЕЧНАЯ МЫШЕЧНАЯ ТКАНЬ

Изображение слайда

Слайд 10: ТИПЫ КАРДИОМИОЦИТОВ

В результате дифференцировки кардиомиоциты превращаются в клетки трёх типов: рабочие, или типичные, сократительные; импульс-генерирующие и проводящие; секреторные (эндокринные).

Изображение слайда

Слайд 11

С троение кардиомиоцита. А — с хема; Б — э лектронная м икрофотография вставочного д иска: 1 — миофибриллы; 2 — м итохондрии; 3 — саркотубулярная с еть; 4 — Т-труб очки; 5 — б а з альная м ембрана; 6 — л изосома; 7 — вставочный д иск; 8 — д есмосома; 9 — з она прикрепления миофибрилл; 1 0 — щелевые контакты; 11 — гликоген.

Изображение слайда

Слайд 12

Сердечная мышечная ткань образована клетками кардиомиоцитами. Сердечное мышечное волокно состоит из цепочки кардиомиоцитов, соединенных конец в конец вставочными дисками. Кардиомиоциты одного волокна имеют ответвления и их боковые поверхности образуют анастомозы с соседними волокнами. В результате межклеточных контактов миокард представляет собой сложную трёхмерную сеть, которая ведёт себя как функциональный синцитий.

Изображение слайда

Слайд 13

Сократительный кардиомиоцит имеет вытянутую цилиндрическую слабоотростчатую форму. Крупное светлое ядро кардиомиоцита находится в центре клетки. Многие клетки имеют два ядра и являются полиплоидными. Цитоплазма (саркоплазма) кардиомиоцита окрашивается оксифильно. Периферическую часть саркоплазмы занимают расположенные продольно исчерченные миофибриллы, построенные так же, как и в скелетной мышечной ткани.

Изображение слайда

Слайд 14

Между миофибриллами цепочками лежат очень крупные митохондрии с высокой плотностью крист. Митохондрии занимают до 40% объёма цитоплазмы, что связано с огромной энергетической нагрузкой. В цитоплазме кардиомиоцитов содержится большое количество включений, особенно липидных капель.

Изображение слайда

Слайд 15

Вставочный диск – это место контактов двух кардиомиоцитов. Вставочный диск - комплекс межклеточный контактов, которые обеспечивают как механическую, так и химическую, функциональную коммуникацию кардиомиоцитов. В световом микроскопе вставочные диски имеют вид тёмных поперечных полосок, более толстых и интенсивно окрашенных в сравнении с дисками А миофибрилл. В электронном микроскопе вставочные диски имеют вид зубчатой линии (интердигитации) или ступенек.

Изображение слайда

Слайд 16

В этой зубчатой линии можно выделить горизонтальные и вертикальные участки и три зоны: Зоны десмосом и полосок слипания ( fascia adherens ). Находятся на вертикальных (поперечных) участках диска. Обеспечивают механическое соединение кардиомиоцитов, препятствуют их отделению во время циклов сокращения. Зоны прикрепления миофибрилл. Находятся на вертикальных (поперечных) участках диска. Служат местами прикрепления актиновых филаментов конечных саркомеров к плазмолемме кардиомиоцитов и аналогичны Z -линиям. Зоны нексусов (щелевых контактов) – места передачи возбуждения с одной клетки на другую, обеспечивают распространение деполяризации, вызывающей сокращение. Находятся на горизонтальных (продольных) участках диска.

Изображение слайда

Слайд 17

Изображение слайда

Слайд 18: Особенности строения секреторных кардиомиоцитов

Секреторные кардиомиоциты локализуются в основном в правом предсердии. В отличии от сократительных кардиомиоцитов в цитоплазме этих клеток хорошо развит секреторный аппарат: гранулярная эндоплазматическая сеть и комплекс Гольджи, и обнаруживаются многочисленные электронно-плотные секреторные гранулы. Эти гранулы содержат пептидный гормон – натрийуретический фактор (кардиодилатин ). Этот гормон оказывает различные эффекты: усиливает секрецию натрия почками, расслабляет гладкие миоциты стенки артерий, подавляет секрецию гормонов, вызывающих гипертензию (альдостерона и вазопрессина). Всё это ведёт к увеличению диуреза и просвета артерий, снижению объёма циркулирующей жидкости и в результате – к снижению артериального давления.

Изображение слайда

Слайд 19: РЕГЕНЕРАЦИЯ СЕРДЕЧНОЙ МЫШЕЧНОЙ ТКАНИ

Поскольку во взрослом организме в сердечной мышечной ткани нет камбиальных клеток, регенерация протекает на внутриклеточном уровне. При повышенной нагрузке на сердце происходит гипертрофия (увеличение размеров) и гиперплазия (увеличение количества) органелл, в том числе миофибрилл. При ранениях сердечной мышцы, инфарктах миокардах на месте погибших клеток образуется рубец из соединительной ткани.

Изображение слайда

Слайд 20: ГЛАДКАЯ МЫШЕЧНАЯ ТКАНЬ

Изображение слайда

Слайд 21

Структурно-функциональным тканевым элементом является гладкий миоцит. Гладкий миоцит – клетка веретеновидной формы, то есть толщина максимальна в среднем участке, а к концам конически сужается. Длина гладкого миоцита может колебаться от 20 мкм (в мелких кровеносных сосудов) до 500 мкм (в матке при беременности). В каждой клетке имеется одно ядро палочковидную или эллипсоидную форму, с плотным хроматином, расположенное в центре наиболее широкой части клетки. Плазмолемма клеток покрыта тонкой базальной мембраной.

Изображение слайда

Слайд 22

В цитоплазме у полюсов ядра концентрируются элементы секреторного аппарата: эндоплазматическая сеть – место синтеза белков межклеточного вещества, комплекс Гольджи, а также мелкие митохондрии.

Изображение слайда

Слайд 23

Плотные тельца состоят из белка α -актинина; аналоги Z -линий саркомеров. Две разновидности: связанные с внутренней поверхностью сарколеммы; свободно лежащие в цитоплазме в виде правильной цепочки. К плотным тельцам прикрепляются актиновые и промежуточные десминовые филаменты.

Изображение слайда

Слайд 24

В гладких миоцитах нет исчерченных миофибрилл, сократительный аппарат представлен тонкими актиновыми филаментами, которые располагаются под углом крест-накрест, образуя сеть. Филаменты закреплены в плотных тельцах. Миозиновые нити в ГМК лабильны – происходит постоянная сборка и разборка при сокращении и расслаблении соответственно.

Изображение слайда

Слайд 25

Механизм сокращения гладких миоцитов принципиально сходен с сокращением исчерченных мышечных тканей: взаимодействие актиновых и миозиновых филаментов. Под действием нервного импульса из пиноцитозных пузырьков высвобождается кальций, который образует комплекс с белком кальмодулином, связывающим Са → комплекс « Са-кальмодулин » активирует фермент киназу лёгких цепей миозина → фосфорилирование миозина придаёт ему способность взаимодействовать с актиновыми филаментами → в результате движений миозиновых филамент вдоль актиновых сближаются плотные тельца, и гладкий миоцит сокращается.

Изображение слайда

Слайд 26

При сокращении гладкой мышечной ткани границы клеток становятся фестончатыми, а ядро – складчатым или штопорообразным. Плотные тельца передают сократительное усилие на соседние ГМК и окружающую их сеть ретикулярных волокон.

Изображение слайда

Слайд 27

Промежуточные десминовые филаменты препятствуют сильной деформации клетки при её сокращении. Гидролиз АТФ происходит в ГМК медленно, что отражается на скорости сокращения. Прекращает сокращение фермент фосфатаза миозина. При этом особенность гладких мышц заключается в том, что не все миозиновые мостики после дефосфорилирования разрушаются. Это обеспечивает длительное поддержание тонуса гладких мышц без дополнительных энергетических затрат.

Изображение слайда

Слайд 28

Гладкие миоциты функционируют не изолированно, а образуют миоцитарные комплексы из 10-12 ГМК. Нервные окончания подходят не ко всем миоцитам, а только к одному из комплекса. Миоциты тесно взаимодействуют друг с другом при помощи нексусов. В области нексусов базальные мембраны прерываются. Через нексусы происходит передача возбуждения, и сокращение охватывает весь комплекс.

Изображение слайда

Слайд 29

Э ндотелий м агистрального сосуда (плоскостной препарат) 1 — эндотелиоциты, 1. 1 — ядро, 1. 2 — цитоплазма, 2 — межклеточные границы.

Изображение слайда

Слайд 30: Регенерация гладкой мышечной ткани

Гладкая мышечная ткань способна к активной регенерации: клеточная регенерация - за счёт делений малодифференцированных клеток; внутриклеточная регенерация – гипертрофия, восстановление органелл.

Изображение слайда

Слайд 31: НЕРВНАЯ ТКАНЬ

Изображение слайда

Слайд 32

Изображение слайда

Слайд 33

С пинной м озг. У часток серого вещества ( передние рога) 1 — тела м ул ьт и п олярны х д вигательных нейронов; 2 — г лиоци т ы ; 3 — н е й роп и л ь; 4 — кровеносные сосуды.

Изображение слайда

Слайд 34: Хроматофильная субстанция (субстанция Ниссля) в мультиполярных нейронах спинного мозга. Окраска по Нисслю

Метод Ниссля основан на окраске рибонуклеопротеидов (рибосомы и ГрЭС) основными красителями (толуидиновым синим, крезил-виолетом). На малом увеличении найти крупный мультиполярный (моторный) нейрон в переднем роге серого вещества спинного мозга. При большом увеличении обратить внимание на светлое ядро, хорошо заметное ядрышко, на наличие глыбок хроматофильной субстанции в теле и дендритах нейрона и на отсутствие их в аксоне и аксональном холмике.

Изображение слайда

Слайд 35

Изображение слайда

Слайд 36: Нейрофибриллы в нейронах передних рогов спинного мозга. Окраска – импрегнация серебром

Соли серебра окрашивают ядрышко и нейрофибриллы в коричневый или чёрный цвет. При малом увеличении найти крупный нейрон в передних рогах спинного мозга. Нейрофибриллы в теле нейрона образуют сеть, а в отростках идут параллельно друг другу. Ядро светлое.

Изображение слайда

Слайд 37

Р азновидности к леток нейроглии. а — протоплазматические астроциты; б — фиброзные астроциты; в — микроглия; г — олиго дендроглия. К летки а и б о бразуют « ножки» н а к ровеносных с осудах м озга, у частвуя в форми ровании гематоэнцефалического барьера.

Изображение слайда

Слайд 38: Глиоциты ганглия (мантийные глиоциты) в спинно-мозговом узле. Окр.: Г.-Э

На малом увеличении найти крупные округлые клетки со светлым ядром, расположенные группами по периферии узла. Это псевдоуниполярные нейроны. Отростки нейронов при данной окраске не выявляются. При большом увеличении заметно, что нейроны окружены оболочкой из мелких мантийных глиоцитов. Цитоплазма глиоцитов практически не заметна, но хорошо видны их мелкие округлые плотные ядра.

Изображение слайда

Слайд 39

М озжечок. У часток к ор ы 1 — молекулярн ый с ло й : 1. 1— дендриты к леток Пуркинье; 1.2 — н ейроны м олекулярно го слоя; 2— г англионарны й с ло й; 2. 1 — т ела грушевидны х ней ронов ( клеток П уркинье), 2.2 — «к орзинки », о бразованные к оллатералями аксонов корзинчат ых к леток; 3 — зернистый слой. 3.1 — тела клеток-зё рен, 3.2 — н е й риты клеток П уркинье; 4 — б елое вещество.

Изображение слайда

Слайд 40

П олушарие б ольшого м озга. Цитоархитектоника 1 — м ягкая м озговая о болонка; 2 — с ерое в ещество. 2.1 — мол екулярны й с лой, 2.2 — н аружный з ернистый с ло й, 2.3 — нар ужный п ирамидный c лой, 2.4 — в нутренни й зернистый сл ой. 2.5 — в нутренни й п ирамидный ( ганглионарный ) с ло й, 2.6 — с лой п о л иморфны х к леток; 3 — б елое вещество.

Изображение слайда

Слайд 41: Миелиновые нервные волокна (расщепленный препарат седалищного нерва). Окраска осмиевой кислотой

Осмиевая кислота окрашивает миелиновую оболочку в чёрный цвет из-за наличия в ней липидов. На малом увеличении найти изолированное миелиновое волокно. При большом увеличении в каждом волокне виден бледно окрашенный осевой цилиндр, по бокам которого располагается тёмный миелиновый слой с узловыми перехватами и насечками, имеющих вид узких светлых косых щелей. Неврилемма при слегка опущенном конденсоре видна как блестящая полоса на периферии волокна, она особенно заметна в области узлового перехвата.

Изображение слайда

Слайд 42: Миелиновые нервные волокна

Изображение слайда

Слайд 43

Изображение слайда

Слайд 44

Изображение слайда

Слайд 45

Изображение слайда

Слайд 46: Безмиелиновое нервное волокно (расщепленный препарат селезеночного нерва). Окр.: гем.-эозин

На малом увеличении найти изолированные нервные волокна. При большом увеличении они имеют вид тонких розовых тяжей, по ходу которых расположены овальной формы ядра нейролеммоцитов сине-фиолетового цвета. На препарате не видны оболочки нейролеммоцитов, мезаксон и осевые цилиндры, так как они очень тонкие.

Изображение слайда

Слайд 47: Безмиелиновое нервное волокно

Изображение слайда

Слайд 48: СКЕЛЕТНЫЕ ТКАНИ

ХРЯЩЕВЫЕ ТКАНИ КОСТНЫЕ ТКАНИ

Изображение слайда

Слайд 49: Классификация хрящевых тканей

Классификация - гиалиновый, эластический, волокнистый – основана на структурных особенностях матрикса

Изображение слайда

Слайд 50

Благодаря особому строению межклеточного вещества, хрящевые ткани обладают повышенной прочностью и упругостью; эластический хрящ, кроме того, и эластичностью.

Изображение слайда

Слайд 51: Хрящевые ткани

Главная функция – опорная : поддержка мягких тканей, формирование соединений кости (суставный гиалиновый хрящ) Формообразующая : в раннем онтогенезе большая часть скелета первоначально формируется из хрящевой ткани. Рост длинных костей : эпифизарные хрящевые пластинки существуют продолжительное время (до полного завершения постнатального роста костей в длину)

Изображение слайда

Слайд 52: Клетки

. Хондроциты поддерживают нормальное состояние матрикса. Хондроциты лежат в лакунах – полостях матрикса.

Изображение слайда

Слайд 53

Кровеносные и лимфатические сосуды, нервные элементы в хрящевых тканях отсутствуют. Питание – путем диффузии питательных веществ из капилляров надхрящницы – соединительной ткани окружающей хрящевую или из синовиальной жидкости суставных сумок.

Изображение слайда

Слайд 54: Матрикс

75-80% воды; аморфное вещество, богатое протеогликанами (образуют макромолекулярные агрегаты, связывающие воду) коллагеновые волокна

Изображение слайда

Слайд 55: Надхрящница

За исключением суставных хрящей, гиалиновый хрящ покрыт слоем соединительной ткани - надрящницей. Наружный волокнистый слой содержит коллаген I типа, фибробласты и многочисленные капилляры; Внутренний клеточный ( хондрогенный) слой, содержащий хондрогенные клетки и прехондробласты.

Изображение слайда

Слайд 56: Дегенеративные изменения

Гиалиновый хрящ подвержен возрастным дегенеративным изменениям. Наиболее часто – обызвествление матрикса (коллаген Х типа), гипертрофия и гибель хондроцитов. Поврежденный суставный хрящ у взрослого человека не восстанавливается, если повреждение не затрагивает кость, лежащую под ним.

Изображение слайда

Слайд 57: Эластический хрящ

Локализация: ушная раковина, стенка наружного слухового канала, евстахиева труба, надгортанник, хрящи гортани. Отличие от гиалинового хряща: Кроме коллагена II типа, матрикс содержит сеть многочисленных ветвящихся эластических волокон.

Изображение слайда

Слайд 58: эластический хрящ

Эластический хрящ не обызвествляется, и в меньшей степени подвержен возрастным дегенеративным изменениям.

Изображение слайда

Слайд 59: Волокнистый хрящ

Занимает пограничное положение между плотной соединительной тканью и гиалиновым хрящом; сочетает в своём строении черты обеих структур. Матрикс содержит большое количество параллельно уложенных коллагеновых волокон (тип I). Хондроциты зажаты между пучками коллагеновых волокон и уложены в цепочки (изогенные группы).

Изображение слайда

Слайд 60: Локализация волокнистого хряща

межпозвоночные диски лобковый симф и з мениск коленного сустава соединения между ключицей и грудиной; между височной и нижнечелюстной костями места перехода связок и сухожилий в кость или гиалиновый хрящ

Изображение слайда

Слайд 61: КОСТНЫЕ ТКАНИ

Изображение слайда

Слайд 62

Функции: Опорно-механическая: роль опоры и рычага для прикрепленных к ним скелетных мышц Защитная: костный скелет защищает и жизненно важные органы черепной и грудной полостей, создает нормальное окружение для кроветворения; Гомеостатическая: мобильный резерв кальция (до 99% всего кальция в организме), фосфора и др.

Изображение слайда

Слайд 63: Клетки костной ткани

Клетки остеогенной дифференцировки, создающие кость: остеогенные клетки → остеобласты → остеоциты Клетки гематогенной дифференцировки, разрушающие вещество кости (симпласты) - остеокласты

Изображение слайда

Слайд 64: остеобласты

активно синтезируют и секретируют все компоненты костного матрикса: - коллаген I типа - гликопротеины - гликозаминогликаны органеллы белкового синтеза: объёмная ГрЭС; Гольджи; мембранные пузырьки; митохондрии

Изображение слайда

Слайд 65: остеокласты

Гигантские (до 90 мкм) многоядерные (до 50 ядер) клетки (симпласты) – образуются в результате слияния моноцитов. Функция: резорбция костной ткани в процессе перестройки и новообразования кости.

Изображение слайда

Слайд 66: Локализация остеокластов:

На поверхности кости в небольших углублениях – лакунах Хоушипа (ниши резорбции)

Изображение слайда

Слайд 67

Остеокласты секретируют: Н+ ионы → кислая среда, оптимальная для растворения солей Са гидролитические ферменты, включая коллагеназу → разрушение органического матрикса

Изображение слайда

Слайд 68

Остеокласты чувствительны к действию гормонов: паратиреоидный гормон → увеличивает число остеокластов и стимулирует их активность; кальцитонин (щитовидная железа) → замедляет резорбцию кости (уменьшает протяженность гофрированной каёмки)

Изображение слайда

Слайд 69: Костный матрикс

Неорганические вещества (50%) Органические вещества (25%) Вода (25%)

Изображение слайда

Слайд 70: Неорганические вещества матрикса

Соединения кальция и фосфора Основной компонент – гидроксиапатит. Его кристаллы при помощи белка остеонектина прикрепляются к молекулам коллагена. Ионы и молекулы воды образуют гидратированную оболочку вокруг каждого кристалла. До 30 химических элементов ( Cu, F, Mg, K, Na, Zn и др.)

Изображение слайда

Слайд 71: Органический компонент

Коллаген I и Y типов (до 90% всех органических веществ) Неколлагеновые белки: остеонектин остеокальцин обеспечивают связывание остеопонтин костных клеток с компонентами матрикса Протеогликаны, ГАГ

Изображение слайда

Слайд 72

Существует два основных типа костной ткани: грубоволокнистая (ретикулофиброзная) – первичная, или незрелая – неупорядоченное расположение коллагеновых волокон в матриксе; пластинчатая, вторичная, или зрелая, замещает грубоволокнистую в ходе нормального развития и при регенерации кости.

Изображение слайда

Слайд 73

Надкостница покрывает снаружи всю кость, за исключением суставных поверхностей: наружный волокнистый слой внутренний остеогенный Надкостница прочно прикреплена к подлежащей костной ткани при помощи пучков коллагеновых волокон – шарпеевские волокна

Изображение слайда

Слайд 74

Эндост – тонкая оболочка, выстилающая кость со стороны костного мозга.

Изображение слайда

Слайд 75: Губчатое костное вещество

Формирует внутреннюю часть эпифизов трубчатых костей и внутреннюю часть плоских костей Состоит из переплетающихся костных пластин, между которыми остаётся значительное количество полостей, заполненных красным костным мозгом. Пластины ориентированы в направлении наибольших нагрузок

Изображение слайда

Слайд 76

Формирование кости происходит благодаря слиянию трабекул друг с другом в единую сеть, промежутки которой заполнены волокнистой соединительной тканью с высоким содержанием сосудов. Мезенхима вокруг кости даёт начало надкостнице, которая обеспечивает её питание и регенерацию.

Изображение слайда

Слайд 77

Изображение слайда

Слайд 78

Стадия минерализации метаэпифизарной пластинки роста В возрасте 20-25 лет в метаэпифизарную пластинку врастают кровеносные сосуды, а с ними остеобласты, которые образуют межклеточное вещество кости. Оно минерализуется. Рост кости в длину прекращается (половые гормоны способствуют подавлению митозов в пластинке роста). Рост кости в толщину происходит за счёт надкостницы. Стадия функциональной и возрастной перестройки кости Продолжается в течение всей жизни. Происходит постоянное разрушение старых и формирование новых остеонов, нарастание их количества и размеров при физической нагрузке и уменьшении при гипокинезии.

Изображение слайда

Слайд 79

Изображение слайда

Последний слайд презентации: МЕХАНИЗМ МЫШЕЧНОГО СОКРАЩЕНИЯ

Изображение слайда

Похожие презентации