Устройства памяти ЭВМ — презентация
logo
Устройства памяти ЭВМ
  • Устройства памяти ЭВМ
  • Устройства памяти ЭВМ
  • Устройства памяти ЭВМ
  • Классификация памяти
  • Память персонального компьютера
  • Свойства внутренней памяти
  • Внутренняя память
  • ОЗУ
  • ОЗУ
  • Устройства памяти ЭВМ
  • Устройства памяти ЭВМ
  • Устройства памяти ЭВМ
  • Устройства памяти ЭВМ
  • ПЗУ
  • ПЗУ
  • Кэш память
  • Кэш память
  • Внешняя память
  • НГМД
  • НГМД
  • НЖМД
  • НЖМД
  • Емкость жестких дисков
  • Устройства памяти ЭВМ
  • Устройства памяти ЭВМ
  • Устройства памяти ЭВМ
  • Устройства памяти ЭВМ
  • Устройства памяти ЭВМ
  • CD-ROM
  • CD-ROM
  • DVD-ROM
  • Устройства памяти ЭВМ
  • Устройства памяти ЭВМ
  • Устройства памяти ЭВМ
  • Устройства памяти ЭВМ
  • Устройства памяти ЭВМ
  • Флэш память
  • Устройства памяти ЭВМ
  • Устройства памяти ЭВМ
  • Устройства памяти ЭВМ
  • Устройства памяти ЭВМ
  • Различные виды флэш памяти
  • Флэш-карты
  • Сравнительные характеристики
  • Устройства памяти ЭВМ
1/45

Первый слайд презентации: Устройства памяти ЭВМ

Изображение слайда

Слайд 2

Памятью компьютера называется совокупность устройств для хранения программ, вводимой информации, промежуточных результатов и выходных данных.

Изображение слайда

Слайд 3

Внутренняя память Внешняя память

Изображение слайда

Слайд 4: Классификация памяти

Изображение слайда

Память предназначена для хранения программ и данных, с которыми процессор непосредственно работает. Она состоит из ячеек, местонахождение которых определяется уникальным адресом. Кроме временных данных, которые определяются тем, что компьютер делает в настоящий момент, он должен знать и постоянно помнить некоторые стандартные программы и данные. Решение проблем хранения различных видов информации и надежного функционирования персонального компьютера привело к использованию нескольких видов внутренней и внешней памяти

Изображение слайда

Слайд 6: Свойства внутренней памяти

Дискретность ; Память состоит из отдельных ячеек – битов. Адресуемость. Во внутренней памяти компьютера все байты пронумерованы. Нумерация начинается с нуля. Порядковый номер байта называется его адресом. Занесение информации в память, а также извлечение ее из памяти, проводится по адресам.

Изображение слайда

Слайд 7: Внутренняя память

Оперативная память предназначена для хранения информации и реализуется с помощью набора микросхем, установленных на материнской плате. Модули памяти представляет собой пластины с рядами контактов, на которых помещаются большие интегральные схемы памяти. Оперативно запоминающее устройство (ОЗУ) Постоянно запоминающее устройство (ПЗУ) Кэш память

Изображение слайда

Слайд 8: ОЗУ

В памяти оперативно запоминающего устройства хранится временная информация, которая изменяется в ходе выполнения микропроцессором различных операций. Такого рода память обеспечивает доступ к любой произвольно выбранной ячейке памяти причем в любой момент времени. Это свойство отражено в англоязычном названии оперативной памяти RAM (Random Access Memory - память с произвольным доступом).

Изображение слайда

Слайд 9: ОЗУ

Нельзя забывать, что ОЗУ является энергозависимыми устройством, т.е. при выключении питания компьютера стирается вся находящаяся в оперативной памяти информация. Оперативная память характеризуется высоким быстродействием и относительно малым объемом. Для современных компьютеров диапазон емкости памяти составляет 16 - 512 Мбайт.

Изображение слайда

Слайд 10

ЛОГИЧЕСКАЯ СТРУКТУРА ОПЕРАТИВНОЙ ПАМЯТИ Оперативная память представляет собой множество ячеек. Каждая ячейка имеет свой уникальный адрес. Нумерация ячеек начинается с нуля. Каждая ячейка памяти имеет объем 1 байт. Максимальный объем адресуемой памяти равен произведению количества ячеек N на 1 байт. Для процессоров Pentium 4 (разрядность шины адреса = 36 бит) максимальный объем адресуемой памяти равен: N × 1 байт = 2 I × 1 байт = 2 36 × 1 байт = 68 719 476 736 байт = = 67 108 864 Кбайт = 65 536 Мбайт = 64 Гбайт Объем памяти Ячейки Десятичный адрес ячейки Шестнадцатеричный адрес ячейки 64 Гбайт 10101010 68 719 476 735 FFFFFFFFF … … … … 4 Гбайт 10101010 4 294 967 295 FFFFFFFF … … … … 10101010 0 0

Изображение слайда

Слайд 11

МОДУЛИ ОПЕРАТИВНОЙ ПАМЯТИ Модуль памяти Kingmax DDR2-667 Модуль памяти Kingston DDR PC3200 Оперативная память изготавливается в виде модулей памяти. Модули памяти DDR, DDR2 устанавливаются в специальные разъемы на системной плате. В персональных компьютерах величина адресного пространства процессора (объем адресуемой памяти) и величина фактически установленной памяти (модулей оперативной памяти) практически всегда различаются.

Изображение слайда

Слайд 12

ПРОПУСКНАЯ СПОСОБНОСТЬ Модуль памяти Kingmax DDR2-667 Модуль памяти Kingston DDR PC3200 Важнейшей характеристикой модулей оперативной памяти является пропускная способность. Разрядность шины данных = 64 бита. Максимально возможная в настоящее время (2006 год) частота шины данных совпадает с частотой системной шины и равна 1064 МГц. Пропускная способность модулей памяти = = 64 бита × 1064 МГц = 68 096 Мбит/с = = 8 512 Мбайт/с ≈ 8 Гбайт/с. Пропускная способность равна произведению разрядности шины данных и частоты операций записи или считывания информации из ячеек памяти: Пропускная способность = = Разрядность шины данных × Частота Модули памяти маркируются своей пропускной способностью, выраженной в Мбайт/с: РС3200, РС4200, РС8500 и др.

Изображение слайда

Слайд 13

ФИЗИЧЕСКАЯ И ВИРТУАЛЬНАЯ ПАМЯТЬ Модуль памяти Kingmax DDR2-667 Модуль памяти Kingston DDR PC3200 Объем используемой программами памяти можно увеличить путем добавления к физической памяти (модулям оперативной памяти) виртуальной памяти. Виртуальная память выделяется в форме области жесткого диска. В ОС Windows это файл подкачки. Размер файла подкачки и его размещение в иерархической файловой системе можно изменить. Замедление быстродействия виртуальной памяти может происходить в результате фрагментации данных в файле. Для того чтобы этого не происходило, рекомендуется произвести дефрагментацию диска и установить для файла подкачки постоянный размер. Быстродействие жесткого диска и, соответственно, виртуальной памяти существенно меньше быстродействия оперативной памяти.

Изображение слайда

Слайд 14: ПЗУ

В памяти ПЗУ хранится информация, записанная на предприятии изготовителе, она должна быть неизменна в течение длительного времени. Постоянная информация включает основные системные программы, которые автоматически запускаются при включении компьютера. Компьютер может читать или исполнять программы из постоянной памяти, но он не может изменять их и добавлять новые. Память ПЗУ предназначена только для считывания информации. Это свойство постоянной памяти объясняет часто используемое английское название ROM (Read Only Memory - память только для чтения).

Изображение слайда

Слайд 15: ПЗУ

Память ПЗУ так же реализуется в виде интегральных микросхем. Отличие заключается в том, что эти микросхемы являются энергонезависимыми. Выключение питания не приводит к потере данных. Существуют две основные разновидности микросхем ROM памяти, однократно программируемые (после записи содержимое памяти не может быть изменено) и многократно программируемые.

Изображение слайда

Слайд 16: Кэш память

Для увеличения производительности компьютера, согласования работы устройств с различным быстродействием современный компьютер использует еще один вид памяти - кэш память (от англ. cache - тайник, склад). Кэш память является промежуточным запоминающим устройством или буфером. Она используется при обмене данными между микропроцессором и RAM, между RAM и внешним накопителем.

Изображение слайда

Слайд 17: Кэш память

Использование кэш памяти сокращает число обращений к жесткому диску для чтения-записи, так как в ней хранятся данные, повторное обращение к которым, со стороны процессора не требует повторения процесса чтения или иной обработки информации. Существует два типа кэш памяти: внутренняя (от 8 до 64 кбайт), размещаемая внутри процессора и внешняя (от 256 кбайт до 1 Мбайт), которая устанавливается на системной плате. микропроцессор RAM RAM Внешние накопители

Изображение слайда

Слайд 18: Внешняя память

Внешняя память предназначена для долговременного хранения программ и данных. Устройства внешней памяти (накопители) являются энергонезависимыми, выключение питания не приводит к потере данных. Они могут быть встроены в системный блок или выполнены в виде самостоятельных блоков, связанных с системным через его порты. Важной характеристикой внешней памяти служит ее объем. Объем внешней памяти можно увеличивать, добавляя новые накопители. Не менее важными характеристиками внешней памяти являются время доступа к информации и скорость обмена информацией. Эти параметры зависят от устройства считывания информации и организации типа доступа к ней.

Изображение слайда

Слайд 19: НГМД

Гибкие магнитные диски, или флоппи-диски (floppy disk), являются наиболее распространенными носителями информации. Наиболее популярны гибкие диски размером 3,5" (дюйма), (3-дюймовые). Диски называются гибкими потому, что пластиковый диск, расположенный внутри защитного конверта, действительно гнется. Именно поэтому защитный конверт изготовлен из твердого пластика. Диск покрывается сверху специальным магнитным слоем, которых обеспечивает хранение данных. Информация записывается с двух сторон диска по дорожкам, которые представляют собой концентрические окружности.

Изображение слайда

Слайд 20: НГМД

Каждая дорожка разделяется на секторы. Плотность записи данных зависит от плотности нанесения дорожек на поверхность, т. е. числа дорожек на поверхности диска, а также от плотности записи информации вдоль дорожки. Существуют стандарты DD, HD и ED для 3,5” дискет, объем записываемой информации от 720 Кб до 2,88 Мб. Самые распространенные - дискеты 3,5” HD. Как носители информации дискеты почти изжили себя, малый объем, небольшая скорость чтения/записи, ненадежность делают их применение невыгодным.

Изображение слайда

Слайд 21: НЖМД

Жесткие магнитные диски, или "винчестеры", являются обязательным компонентом персонального компьютера. Существуют разные версии происхождения названия "винчестер". По одной из них, первые жесткие диски были выпущены в филиале фирмы IВМ в небольшом городке Винчестере. Жесткий диск - это несколько алюминиевых пластин, покрытых магнитным слоем, которые вместе с механизмом считывания и записи заключены в герметически закрытый корпус внутри системного блока. Жесткие диски имеют преимущества перед гибкими дисками по двум основным параметрам: объем жестких дисков существенно выше и колеблется от нескольких сотен мегабайт до сотен гигабайт; скорость обмена информацией в 10 раз больше.

Изображение слайда

Слайд 22: НЖМД

Для обращения к жесткому диску используется имя, заданное латинской буквой С:. В случае, если установлен второй жесткий диск, ему присваивается следующая буква латинского алфавита D:. В компьютере предусмотрена возможность с помощью специальной системной программы условно разбивать один диск на несколько. Такие диски, которые не существуют как отдельное физическое устройство, а представляют лишь часть одного физического диска, называют логическими дисками.

Изображение слайда

Слайд 23: Емкость жестких дисков

Основным параметром является емкость, измеряемая в гигабайтах. Средний размер домашнего современного жесткого диска составляет 120 — 250 Гбайт, причем этот параметр неуклонно растет. 1956 — продажа первого коммерческого жёсткого диска, IBM 350 RAMAC, 5 Мб. Он весил около тонны, занимал два ящика — каждый размером с большой холодильник 1991 — Максимальная ёмкость 100 Мб 1995 — Максимальная ёмкость 2 Гб 1997 — Максимальная ёмкость 10 Гб 1999 — IBM выпускает Microdrive ёмкостью 170 и 340 Мб 2002 — Взят барьер адресного пространства выше 137 Гб 2005 — Максимальная ёмкость 500 Гб 2007 — Hitachi представляет накопитель емкостью 1000 Гб

Изображение слайда

Слайд 24

МАГНИТНЫЙ ПРИНЦИП ЗАПИСИ И СЧИТЫВАНИЯ ИНФОРМАЦИИ Дисковод 3.5 ’’ (НГМД) В накопителях на гибких магнитных дисках (НГМД) и накопителях на жестких магнитных дисках (НЖМД), или «винчестерах», в основу записи информации положено намагничивание ферромагнетиков в магнитном поле, хранение информации основывается на сохранении намагниченности, а считывание информации базируется на явлении электромагнитной индукции. Жёсткий диск Samsung (НЖМД)

Изображение слайда

Слайд 25

МАГНИТНЫЙ ПРИНЦИП ЗАПИСИ И СЧИТЫВАНИЯ ИНФОРМАЦИИ В процессе записи информации на гибкие и жесткие магнитные диски головка дисковода с сердечником из магнитомягкого материала (малая остаточная намагниченность) перемещается вдоль магнитного слоя магнитожёсткого носителя (большая остаточная намагниченность). На магнитную головку поступают последовательности электрических импульсов, которые создают в головке магнитное поле. В результате последовательно намагничиваются (логическая единица) или не намагничиваются (логический нуль) элементы поверхности носителя. При считывании информации при движении магнитной головки над поверхностью носителя намагниченные участки носителя вызывают в ней импульсы тока (явление электромагнитной индукции)

Изображение слайда

Слайд 26

ГИБКИЕ МАГНИТНЫЕ ДИСКИ Дискета 3,5 ’’ Устройство дискеты 3,5 ’’ : 1 - заглушка "защита от записи"; 2 - основа диска с отверстиями для приводящего механизма; 3 - защитная шторка открытой области корпуса; 4 - пластиковый корпус дискеты; 5 - противопылевая салфетка; 6 - магнитный диск; 7 - область записи. Дискета 5,25 ’’ 1971 - фирмой IBM представлена первая дискета диаметром 8 ″ (200 мм). 1976 - разработана дискета диаметром 5,25 ″ Дискета 8 ’’ 1981 – фирма Sony разработала дискету диаметром 3,5″ (90 мм). В первой версии объём составляет 720 килобайт. Поздняя версия имеет объём 1440 килобайт. Из-за медленного вращения диска (360 об/мин) скорость записи и считывания составляет всего 50 Кбайт/с.

Изображение слайда

Слайд 27

ГИБКИЕ МАГНИТНЫЕ ДИСКИ Дискета 3,5 ’’ Устройство дискеты 3,5 ’’ : 1 - заглушка "защита от записи"; 2 - основа диска с отверстиями для приводящего механизма; 3 - защитная шторка открытой области корпуса; 4 - пластиковый корпус дискеты; 5 - противопылевая салфетка; 6 - магнитный диск; 7 - область записи. Дискета 5,25 ’’ 1971 - фирмой IBM представлена первая дискета диаметром 8 ″ (200 мм). 1976 - разработана дискета диаметром 5,25 ″ Дискета 8 ’’ 1981 – фирма Sony разработала дискету диаметром 3,5″ (90 мм). В первой версии объём составляет 720 килобайт. Поздняя версия имеет объём 1440 килобайт. Из-за медленного вращения диска (360 об/мин) скорость записи и считывания составляет всего 50 Кбайт/с.

Изображение слайда

Слайд 28

ЖЕСТКИЕ МАГНИТНЫЕ ДИСКИ За счет использования нескольких дисковых пластин и гораздо большего количества дорожек на каждой стороне магнитных пластин информационная емкость жестких дисков может достигать 750 Гбайт. Скорость записи и считывания информации на жестких дисках может достигать 300 Мбайт/с (по шине SATA ) за счет быстрого позиционирования магнитной головки и высокой скорости вращения дисков (до 7200 об/мин). В жестких дисках используются достаточно хрупкие и миниатюрные элементы (магнитные пластины носителей, магнитные головки и т.д.), поэтому в целях сохранения информации и работоспособности жесткие диски необходимо оберегать от ударов и резких изменений пространственной ориентации в процессе работы.

Изображение слайда

Слайд 29: CD-ROM

Приводы CD-ROM. Компакт диски, использовавшиеся для аудиоаппаратуры, были модифицированы для применения в РС и в настоящее время стали неотъемлемой частью современных компьютеров. Является отличным носителем информации, более компактным, удобным и дешевым чем винчестер. Выполняется как внутренне устройство, и имеет размер дисковода 5,25”. Обычно управляются через IDE, SCSI интерфейс или звуковую карту. Диск изготовлен из поликарбоната, который покрыт с одной стороны отражающим слоем (из алюминия или золота). Запись производится с помощью лазерного луча выжигающего чередования углублений в поверхности металлического слоя.

Изображение слайда

Слайд 30: CD-ROM

Основной характеристикой является скорость передачи данных. За единицу считывания, принята скорость считывания с магнитной ленты. Скорость считывания последующих устройств кратна этой и варьируется от 150 Кб./сек. До 6-7 Мб./сек. Скорость считывания последующих устройств кратна этой и варьируется от 150 Кб./сек. До 6-7 Мб./сек. Качество считывания характеризуется коэффициентом ошибок и представляет собой оценку вероятности искажения информационного бита при его считывании. Данный параметр отражает способность устройства корректировать ошибки чтения/записи. Среднее время доступа – время, которое требуется приводу для нахождения на носителе нужных данных. Варьируется от 400 до 80 мс.

Изображение слайда

Слайд 31: DVD-ROM

DVD (Digital Video Disk) – диски, которые сменят CD-ROM, первоначально разрабатывались для домашнего видео. Отличаются тем, что могут хранить объем данных многократно превышающий возможности компакт дисков (от 4,7 до 17 Гб.). Уровень качества звука и изображения хранимого на DVD приближен к студийному качеству. В накопителях DVD используется более узкий луч лазера чем в CD-ROM, поэтому толщина защитного слоя диска была снижена в 2 раза, что привело к появлению двухслойных дисков.

Изображение слайда

Слайд 32

ОПТИЧЕСКИЙ ПРИНЦИП ЗАПИСИ И СЧИТЫВАНИЯ ИНФОРМАЦИИ В процессе записи информации на оптические диски для создания участков поверхности с различными коэффициентами отражения применяются различные технологии: от простой штамповки до изменения отражающей способности участков поверхности диска с помощью мощного лазера. Информация на лазерном диске записывается на одну спиралевидную дорожку, начинающуюся от центра диска и содержащую чередующиеся участки с различной отражающей способностью. В процессе считывания информации с оптического диска луч лазера, установленного в дисководе, падает на поверхность вращающегося диска и отражается. Так как поверхность оптического диска имеет участки с различными коэффициентами отражения, то отраженный луч также меняет свою интенсивность (логический 0 или 1).

Изображение слайда

Слайд 33

ОПТИЧЕСКИЕ ДИСКИ CD - и DVD -диски Оптические CD –диски рассчитаны на использование инфракрасного лазера с длиной волны 780 нм и имеют информационную емкость 700 Мбайт. Оптические DVD -диски рассчитаны на использование красного лазера с длиной волны 650 нм и имеют информационную емкость от 4,7 Гбайт (однослойные DVD -диски ) до 8,5 Гбайт (двухслойные DVD -диски ). Оптические диски HD DVD и Blu-Ray рассчитаны на использование синего лазера с длиной волны 405 нм и имеют информационную емкость в 3-5 раз превосходящую информационную емкость DVD -дисков. Однослойные и двухслойные DVD -диски HD DVD

Изображение слайда

Слайд 34

ОПТИЧЕСКИЕ ДИСКИ На дисках CD – ROM и DVD-ROM хранится информация, записанная на них в процессе изготовления. Запись на них новой информации невозможна. На дисках CD – R и DVD ± R информация может быть записана только раз. На дисках CD – RW и DVD-RW информация может быть записана и стерта многократно.

Изображение слайда

Слайд 35

ОПТИЧЕСКИЕ ДИСКОВОДЫ Оптические CD- и DVD -дисководы используют лазер для чтения или записи информации Скорость чтения/записи информации зависит от скорости вращения диска. Первые CD -дисководы были односкоростными и обеспечивали скорость считывания информации 150 Кбайт/с. Современные CD -дисководы обеспечивают в 52 раза большую скорость чтения и записи CD-R (до 7,8 Мбайт/с). Запись CD-RW дисков производится на меньшей скорости, поэтому CD- дисководы маркируются тремя числами «скорость записи CD-R » × «скорость записи CD-RW » × «скорость чтения» (например, 40 × 12 × 48)

Изображение слайда

Слайд 36

ОПТИЧЕСКИЕ ДИСКОВОДЫ Первые DVD- накопители обеспечивали скорость считывания информации примерно 1,3 Мбайт/с. были односкоростными и обеспечивали скорость считывания информации 150 Кбайт/с. Современные DVD -дисководы обеспечивают в 16 раз большую скорость чтения ( 21 Мбайт/с), в 8 раз большую скорость записи DVD ±R дисков и в 6 раз большую скорость записи DVD±RW дисков. DVD- дисководы маркируются тремя числами (например, 16 × 8 × 6).

Изображение слайда

Слайд 37: Флэш память

Флэш-память, появившаяся в конце 1980-х годов (Intel) является представителем класса программируемых постоянных ЗУ (запоминающих устройств) с электрическим стиранием. Однако стирание в ней осуществляется сразу целой области ячеек: блока или всей микросхемы. Это обеспечивает более быструю запись информации или, как иначе называют данную процедуру, программирование ЗУ. Для упрощения этой процедуры в микросхему включаются специальные блоки, делающие запись "прозрачной" (подобной записи в обычное ЗУ) для аппаратного и программного окружения.

Изображение слайда

Слайд 38

ПРИНЦИП ЗАПИСИ И СЧИТЫВАНИЯ ИНФОРМАЦИИ НА КАРТАХ ФЛЭШ-ПАМЯТИ Во флэш-памяти для записи и считывания информации используются электрические сигналы. Каждая ячейка флэш-памяти хранит один бит информации и состоит из одного полевого транзистора со специальной электрически изолированной областью – «плавающим» затвором. Важной особенностью плавающего затвора является способность удерживать электроны, то есть заряд. Наличие или отсутствие заряда на плавающем затворе определяет характер информации, хранящейся в ячейке.. При записи данных на управляющий затвор подается положительное напряжение и электроны в результате эффекта туннелирования попадают на плавающий затвор. На нем они могут храниться в течение нескольких лет. Для стирания информации на управляющий затвор подается высокое отрицательное напряжение, и электроны с плавающего затвора переходят (туннелируют) на исток. + + 5 B SiO 2

Изображение слайда

Слайд 39

КАРТЫ ФЛЭШ-ПАМЯТИ Флэш-память представляет собой микросхему, помещенную в миниатюрный плоский корпус. Микросхемы флэш-памяти могут содержать миллиарды ячеек, каждая из которых хранит 1 бит информации. Информационная емкость карт флэш-памяти может достигать 128 Гбайт. Информация записанная на флэш-память, может очень долго храниться (от 20 до 100 лет). Флэш-память компактнее и потребляет значительно меньше энергии (примерно в 10-20 раз), чем магнитные и оптические дисководы. Для считывания и записи информации карта памяти вставляется в специальные накопители ( картридеры ), встроенные в мобильные устройства или подключаемые к компьютеру через USB -порт. Универсальный картридер

Изображение слайда

Слайд 40

КАРТЫ ФЛЭШ-ПАМЯТИ Благодаря низкому энергопотреблению, компактности, долговечности и относительно высокому быстродействию, флэш-память идеально подходит для использования в портативных устройствах. Цифровая фотокамера МР3-плеер Портативный компьютер Сотовый телефон Цифровой диктофон Цифровая видеокамера

Изображение слайда

Слайд 41

USB ФЛЭШ-ДИСКИ Накопители на флэш-памяти представляют собой микросхему флэш-памяти, дополненную контроллером USB. USB флэш-диски могут содержать переключатель защиты от записи, поддерживать парольную защиту, могут иметь жидкокристаллический экранчик, на котором отображается, сколько свободного места остается на диске.

Изображение слайда

Слайд 42: Различные виды флэш памяти

Портативный привод DVD-ROM ; может быть использован как при подключении к компьютеру в качестве DVD-ROMа, так и в качестве DVD-плеера при подключении к телевизору. DISK STENO - это не что иное, как автономный внешний USB 2.0 CDRW-привод, совмещенный с 6-форматным кард-ридером. Может считывать информацию с шести основных типов флэш-карт, можно также использовать в качестве внешнего пишущего привода. Накопитель ZIP Pro. Может выполнять несложные задачи, сводящиеся к переносу туда-сюда небольших объемов рабочих данных и больших объемов данных развлекательных, таких, как музыка, фильмы и игры.

Изображение слайда

Слайд 43: Флэш-карты

Nixvue Digital Album После заполнения карты памяти (используемой, например, в цифровой фотокамере) данные с этой карты могут быть переписаны в цифровой альбом; возможна печать фото без компьютера. OLYMPUS CAMEDIA M-XD512P xD-Picture Card Карта памяти, предназначена для долговременного (десятки лет) хранения данных в отсутствие источника питания. Используется в цифровых камерах и других устройствах. USB Flash Drive Ресурс - до 1 000 000 циклов перезаписи. Срок гарантированного хранения данных до 10 лет. SmartMedia Flash Card Карта памяти, предназначенная для долговременного хранения данных. Используется в цифровых камерах и других устройствах Compact Flash Card Карта памяти, предназначена для долговременного (десятки лет) хранения данных в отсутствие источника. Используются в цифровых камерах карманных компьютерах и других устройствах SD Memory Card Карта памяти; используется в МР3-плеерах, цифровых фотокамерах, наладонниках (PDA), смартфонах и других устройствах.

Изображение слайда

Тип носителя Емкость носителя Скорость обмена данными (Мбайт/с) Опасные воздействия Гибкие магнитные диски 1,44 Мб 0,05 Магнитные поля, нагревание, физическое воздействие Жесткие магнитные диски сотни Гбайт около 133 Удары, изменение пространственной ориентации в процессе работы CD-ROM 650-800 Мбайт до 7,8 Царапины, загрязнение DVD-ROM до 17 Гбайт до 21 Устройства на основе flash-памяти до 1024 Мбайт USB 1.0 - 1,5 USB 1.1 - 12 USB 2.0 - 480 Перенапряжение питания

Изображение слайда

Последний слайд презентации: Устройства памяти ЭВМ

http://www.junior.ru/wwwexam/t_pam1.htm http://lanusic2008.narod.ru/test.htm

Изображение слайда

Похожие презентации