Методы исследования центральной нервной системы (ЦНС) — презентация
logo
Методы исследования центральной нервной системы (ЦНС)
  • Методы исследования центральной нервной системы (ЦНС).
  • Методы исследования центральной нервной системы (ЦНС).
  • Методы исследования центральной нервной системы (ЦНС).
  • Методы исследования центральной нервной системы (ЦНС).
  • Методы исследования центральной нервной системы (ЦНС).
  • Методы исследования центральной нервной системы (ЦНС).
  • Методы исследования центральной нервной системы (ЦНС).
  • Методы исследования центральной нервной системы (ЦНС).
  • Методы исследования центральной нервной системы (ЦНС).
  • Методы исследования центральной нервной системы (ЦНС).
  • Методы исследования центральной нервной системы (ЦНС).
  • Методы исследования центральной нервной системы (ЦНС).
  • Методы исследования центральной нервной системы (ЦНС).
  • Методы исследования центральной нервной системы (ЦНС).
  • Методы исследования центральной нервной системы (ЦНС).
  • Методы исследования центральной нервной системы (ЦНС).
  • Методы исследования центральной нервной системы (ЦНС).
  • Методы исследования центральной нервной системы (ЦНС).
  • Методы исследования центральной нервной системы (ЦНС).
  • Методы исследования центральной нервной системы (ЦНС).
  • Методы исследования центральной нервной системы (ЦНС).
  • Методы исследования центральной нервной системы (ЦНС).
  • Методы исследования центральной нервной системы (ЦНС).
1/23

Первый слайд презентации

Методы исследования центральной нервной системы (ЦНС).

Изображение слайда

Слайд 2

Общий план строения нервной системы Головной мозг Спинной мозг Двигательные нервы Чувствительные нервы Симпатическая Парасимпатическая Центральная (ЦНС) Периферическая Нервная система Автономная Соматическая

Изображение слайда

Слайд 3

Отделы головного мозга Продолговатый мозг Конечный мозг Промежуточный мозг Средний мозг Мост мозга Нервные волокна входят в головной мозг и выходят из него в составе черепных нервов (12 пар) Мозжечок

Изображение слайда

Слайд 4

Методы исследования ЦНС I Изучение топографии структур головного мозга. 1 Стереотаксический метод 2 Эхоэнцефалография. 3 Рентгеновская компьютерная томография. II Изучение электрической активности мозга. 1 Электроэнцефалография: 2 Регистрация вызванных потенциалов. 3 Микроэлектродная техника. III Изучение молекулярных механизмов работы мозга. 1 Микроионофорез. 2 Позитронно-эмиссионная томография. 3 Магнитно-резонансная томография (МРТ ).

Изображение слайда

Слайд 5

Стереотаксический метод C тереотаксический метод позволяет производить мало инвазивное хирургическое вмешательство в локальные участки головного мозга, не затрагивая жизненно важных структур. Лист из стереотаксического атласа мозга крысы. На фронтальном срезе обозначены структуры мозга, привязанные к системе координат.

Изображение слайда

Слайд 6

Биопсия мозга при помощи стереотаксиса. Рамка вокруг головы пациента гарантирует правильное направление к цели (макс. ошибка : ~1 мм). Стереотаксическая радиохирургия ‒ применение высокоточного излучения для лечения опухолей и других патологических изменений головного мозга. Гамма-нож Безрамочный стереотаксис ‒ computer assisted neurosurgery (компьютерная нейронавигация )

Изображение слайда

Слайд 7

М етод первичной оценки состояния основных структур головного мозга Эхоэнцефалография Сдвиг М-эха

Изображение слайда

Слайд 8

Рентгеновская компьютерная томография. Схема установки. 1 – движущийся источник рентгеновского излучения; 2 – объект; 3 – датчики излучения; 4 – блок регистрации, обработки и формирования изображения. Источник рентгеновского излучения подвижен, узкий рентгеновский луч проходит через голову под различными углами. Расположение структур моделируется с применением математических методов послойно.

Изображение слайда

Слайд 9

Электроэнцефалография (ЭЭГ) Метод исследования головного мозга, основанный на регистрации его суммарных электрических потенциалов. Можно: оценивать функциональную активность мозга. определять локализацию органических поражений мозга. Ритмы ЭЭГ ‒ основы анализа Измерение частоты (Гц) и амплитуды (мкВ) на ЭЭГ.

Изображение слайда

Слайд 10

Ритмы ЭЭГ Альфа (α) – ритм 8 - 13 Гц, амплитуда до 100 мкВ состояние спокойного расслабленного бодрствования, особенно при закрытых глазах. Бета (β) – ритм. Частота 14 - 40 Гц, амплитуда до 15 мкВ. - при повышении активности мозга, Тета (θ) - ритм с частотой 4-6 Гц и амплитудой от 40 до 300 мкВ; трактуется как ритм напряжения Дельта (δ) - ритм, частота 0,5-3 Гц, амплитуда как у тета -ритма ; характерен для состояния глубокого сна

Изображение слайда

Слайд 11

Теория Восходящие активирующие системы на уровне ретикулярной формации среднего мозга и в преоптических ядрах переднего мозга, вызывают повышение уровня функциональной активности Подавляющие, сомногенные системы в продолговатом мозге, нижних отделах моста и неспецифических таламических ядрах. Уровень бодрствования снижается вплоть до засыпания.

Изображение слайда

Слайд 12

Нейроны, специализированные относительно выполняемых задач, объединены в модули. Высокая активность – группы нейронов работают в своём ритме, на ЭЭГ низкоамплитудные высокочастотные волны. При снижении уровня деятельности мозга сокращается афферентный приток, и нейроны функционально объединяются в огромные популяции с синхронизированной активностью, которая отражается на ЭЭГ медленными, регулярными, высокоамплитудными колебаниями.

Изображение слайда

Слайд 13

Международная схема расположения электродов 10-20 Буквенные индексы: О – затылочное отведение; Р – теменное отведение, С – центральное отведение; F – лобное отведение; Т – височное отведение; Реакция десинхронизации на ЭЭГ при открывании глаз. F – лобные отведения, О – затылочные отведения.

Изображение слайда

Слайд 14

ЭЭГ больного с опухолью головного мозга. Асимметрия. Фокус медленной волновой активности в виде регулярных δ – колебаний частотой 1-1,5 Гц в левых лобно-височно-теменных отведениях: F 3, P 3, C 3, T 5. Нечётные номера – левое полушарие.

Изображение слайда

Слайд 15

Регистрация вызванных потенциалов Анализ электрических потенциалов, возникающих в ответ на раздражения периферических рецепторов и структур центральной нервной системы. Первичные ответы в проекционных зонах корковых отделов соответствующих анализаторов: зрительного, слухового, кожного, интероцептивного, вестибулярного. Вторичные ответы, отражающие поступление возбуждений от таламуса, ретикулярной формации и других областей мозга Метод ВП используется для исследования сенсорных функций – объективной аудиометрии, оценки зрения у детей раннего возраста. Вызванные потенциалы позволяют диагностировать демиелинизирующие заболевания, (рассеянный склероз в доклиническом периоде), локализовать ишемические инсульты и опухоли, контролировать динамику и эффективность лечения травматических повреждений нервов.

Изображение слайда

Слайд 16

Определение локализации проекционных зон различных анализаторных систем в коре мозга Сенсорный гомункулус

Изображение слайда

Слайд 17

Соматосенсорные вызванные потенциалы (ССВП) на стимуляцию срединного нерва здорового человека (А) и больного с тяжёлым ишемическим инсультом (В). У обследуемого наблюдается снижение всех компонентов ССВП.

Изображение слайда

Слайд 18

Микроэлектродная техника Регистрация импульсной активности отдельных нейронов может осуществляться у: нервных клеток в культуре ткани, нейронов ганглиев беспозвоночных животных (например, виноградной улитки). нейронов ЦНС у позвоночных наркотизированных животных. нервных клеток в условиях свободного поведения объекта. Регистрация импульсной активности нейрона в свободном поведении животного – инструментальной пищедобывательной деятельности

Изображение слайда

Слайд 19

Активность нейрона зрительной коры в инструментальных пищедобывательных поведенческих актах. С нижение импульсной активности нейрона по мере насыщения животного

Изображение слайда

Слайд 20

Позитронно-эмиссионная томография (ПЭТ) Метод основан на введении короткоживущих радиоактивных изотопов в кровеносное русло с последующей регистрацией их распределения в мозге по испускаемым позитронам. В тканях позитрон проходит 0,5-3 мм, и встречается с электроном, происходит аннигиляция и возникают два γ-кванта, разлетающихся строго в противоположных направлениях. Кванты регистрируются детекторами позитронно-эмиссионного томографа, кольцом охватывающими голову обследуемого. На обработку пропускаются только парные импульсы Разрешающая способность около 0,5 см 3, для получения изображения требуется от десятков секунд до несколько минут.

Изображение слайда

Слайд 21

ПЭТ позволяет картировать распределение в мозге крови, кислорода, глюкозы и других веществ в покое и при выполнении заданий Динамика связывания лиганда дофаминовых рецепторов (D 2 ) в мозге Накопление амилоида в мозге при болезни Альцгеймера – нижний ряд

Изображение слайда

Слайд 22

Магнитно- резонансная томография (МРТ ) В основе МРТ ‒‒ явление ядерного магнитного резонанса (ЯМР) ядер водорода, которые взаимодействуют с внешними статическим и переменным магнитными полями. Опухоль головного мозга Изображения структуры органов и тканей, оценка их состояния

Изображение слайда

Последний слайд презентации: Методы исследования центральной нервной системы (ЦНС)

Функциональная магнитно- резонансная томография ( фМРТ ) фМРТ основана на магнитных свойствах оксигенированого и дезоксигенированого гемоглобина. Изменение соотношения оксигемоглобин/ дезокси -гемоглобин в омываемом кровью участке ткани приводит к изменению её магнитно-резонансного сигнала, показывая уровень активности Сигнал фМРТ. Увеличение уровня оксигенации крови – красный цвет; уменьшение – голубой

Изображение слайда

Похожие презентации