Первый слайд презентации
8 класс Л.С. Атанасян Геометрия 7-9 Четыре замечательные точки треугольника
Слайд 2
А С В Свойство медиан треугольника. Медианы треугольника пересекаются в одной точке, которая делит каждую медиану в отношении 2:1, считая от вершины. В 1 А 1 О ВО В 1 О = АО А 1 О СО С 1 О = = 2 1 С 1 1
Слайд 3
Каждая точка биссектрисы неразвернутого угла равноудалена от его сторон. В А Теорема С L K М 1 2
Слайд 4
Каждая точка, лежащая внутри угла и равноудаленная от сторон угла, лежит на его биссектрисе. В А Обратная теорема С L K М
Слайд 5
Биссектрисы треугольника пересекаются в одной точке. В А Следствие С K А 1 В 1 С1 О М L ОМ=ОК ОК =О L По теореме о биссектрисе угла = По обратной теореме т. О лежит на биссектрисе угла С ОМ О L 2
Слайд 6
a С Серединным перпендикуляром к отрезку называется прямая, проходящая через середину данного отрезка и перпендикулярно к нему. М В Определение Прямая a – серединный перпендикуляр к отрезку.
Слайд 7
m O Каждая точка серединного перпендикуляра к отрезку равноудалена от концов этого отрезка. B A Теорема М
Слайд 8
Каждая точка, равноудаленная от концов отрезка, лежит на серединном перпендикуляре к нему. Обратная теорема B A m O N
Слайд 9
По теореме о серединном перпендикуляре к отрезку Серединные перпендикуляры к сторонам треугольника пересекаются в одной точке. C B Следствие A m р О A =О B О B =О C = По обратной теореме т. О лежит на сер. пер. к отрезку АС О A О C n О 3
Слайд 10
Высоты треугольника (или их продолжения) пересекаются в одной точке. Теорема C B A А 2 С 2 В 2 A 1 В 1 С 1 По теореме о серединных перпендикулярах: серединные перпендикуляры к сторонам треугольника пересекаются в одной точке. 4
Слайд 11
Замечательные точки треугольника. Точка пересечения медиан Точка пересечения биссектрис Точка пересечения высот Точка пересечения серединных перпенди куляров
Слайд 12
Треугольник, который опирается на острие иглы в точке пересечения медиан, находится в равновесии! Точка, обладающая таким свойством, называется центром тяжести треугольника.
Слайд 13
А В С К М O Т Высоты тупоугольного треугольника пересекаются в точке О, которая лежит во внешней области треугольника. Высоты прямоугольного треугольника пересекаются в вершине С. Высоты остроугольного треугольника пересекаются в точке О, которая лежит во внутренней области треугольника. O А В С Точка пересечения высот называется ортоцентр.
Слайд 14
Отрезок биссектрисы угла треугольника, соединяющий вершину треугольника с точкой противоположной стороны, называется биссектрисой треугольника. Эта точка замечательная – точка пересечения биссектрис является центром вписанной окружности. O
Последний слайд презентации: 8 класс Л.С. Атанасян Геометрия 7-9 Четыре замечательные точки треугольника
Эта точка замечательная – точка пересечения серединных перпендикуляров к сторонам треугольника является центром описанной окружности. Серединным перпендикуляром к отрезку называется прямая, проходящая через середину данного отрезка и перпендикулярно к нему. O