Первый слайд презентации: Магические квадраты
Слайд 2
Магический квадрат представляет собой квадратную таблицу с числами, построенную так, что сумма чисел в каждой строке, каждом столбце и в каждой диагонали равна одному и тому же числу (магическая сумма). Магические квадраты бывают разных порядков — порядок квадрата определяет число столбцов/строк.
Существует предание, согласно которому китайский император Ию, живший четыре тысячи лет назад, увидел однажды на берегу реки священную черепаху с узором из черных и белых кружков на панцире.
Слайд 4
4 9 2 3 5 7 8 1 6 Найдём сумму чисел в каждой строке. = 15 4+ 9+ 2 3+ 5+ 7 = 15 = 15 8+ 1+ 6
Слайд 5
Найдём сумму чисел в каждом столбце. = 15 4+ 9+ 2+ 3+ 5+ 7+ = 15 = 15 8 1 6 4 9 2 3 5 7 8 1 6
Слайд 6
Найдём сумму чисел в каждой диагонали. = 15 4+ 2+ 5+ = 15 8 6 4 9 2 3 5 7 8 1 6 5+
Слайд 7
Все 8 различных магических квадратов из чисел от 1 до 9 ! 8 3 4 1 5 9 6 7 2 2 9 4 7 5 3 6 1 8 6 1 8 7 5 8 2 9 4 4 9 2 3 5 7 8 1 6 6 7 2 1 5 9 8 3 4 4 3 8 9 5 1 2 7 6 2 7 6 9 5 1 4 3 8 8 1 6 3 5 7 4 9 2
Слайд 8: Символ
китайцы назвали « ло – шу» и считали магическим. Поэтому квадратные таблицы чисел, обладающие таким удивительным свойством, с тех пор называют магическими квадратами.
Слайд 9: Магические квадраты
Полного описания всех возможных магических квадратов не получено и до сего времени. Известно, что магических квадратов 2х2 не существует (может быть, кто-нибудь это докажет?). Магический квадрат 3х3 только один, так как остальные магические квадраты 3 на 3 получаются из него либо поворотом вокруг центра, либо отражением относительно одной из его осей симметрии. Магических квадратов 4х4, как на картине Дюрера, составлено уже 800, а количество магических квадратов 5х5 близко к четверти миллиона!