Первый слайд презентации
Выбор точки из фигуры на плоскости Выбор точки из отрезка и дуги окружности Выбор точки из числового отрезка Геометрическая вероятность
Так как площадь фигуры G не больше, чем площадь фигуры F, то P(A) ≤ 1. Точку наудачу бросают в фигуру F на плоскости. Какова вероятность того, что точка попадёт в некоторую фигуру G, которая содержится в фигуре F ? F G
Точку наудачу бросают на квадрат, сторона которого равна 1. Какова вероятность того, что расстояние от этой точки до ближайшей стороны квадрата не больше чем 0,25? F G A B C D
Из ∆ ABC случайным образом выбирается точка X. Найдите вероятность того, что она принадлежит треугольнику, вершинами которого являются середины сторон треугольника. B A C K N M Q Q Q Q
Слайд 5: Выбор точки из отрезка Пример
M Внутри отрезка MN случайным образом выбирается точка X. Найдите вероятность того, что точка X ближе к точке N, чем к точке M. N O X
Слайд 6: Выбор точки из дуги окружности Пример
На окружности даны точки A и B, причём эти точки не являются диаметрально противоположными. На этой же окружности случайным образом выбирается точка C. Найдите вероятность того, что отрезок ВС пересекает диаметр окружности, проходящий через точку А. O D A C B Если длину всей окружности возьмём равной L, тогда
Слайд 7: Выбор точки из числового отрезка Определение
m Рассмотрим событие, состоящее в том, что точка с координатой x выбрана из отрезка [ a ; b ], содержащегося в отрезке [ m ; n ]. Это событие обозначим ( a≤x≤b ). А его вероятность равна отношению длин отрезков [ a ; b ] и [ m ; n ] : n a b x
Слайд 8: Выбор точки из числового отрезка Пример 1
0 1 x Найдите вероятность того, что точка, случайно выбранная из отрезка [0;1], принадлежит отрезку.
Слайд 9: Выбор точки из числового отрезка Пример 2
Согласно правилам дорожного движения, пешеход может перейти улицу в неустановленном месте, если в пределах видимости нет пешеходных переходов. В городе N расстояние между пешеходными переходами на улице S равно 1 км. Пешеход переходит улицу S где-то между этими двумя переходами. Он может видеть знак перехода не дальше чем за 100 м от себя. Найдите вероятность того, что пешеход не нарушает правила. 0 0,1 0,9 1 x
Последний слайд презентации: Выбор точки из фигуры на плоскости Выбор точки из отрезка и дуги: Выбор точки из числового отрезка Пример 3
0 30 Поезд проходит мимо платформы за полминуты. В какой-то момент, совершенно случайно выглянув из своего купе в окно, Иван Иванович увидел, что поезд идёт мимо платформы. Иван Иванович смотрел в окно ровно 10 секунд, а затем отвернулся. Найдите вероятность того, что он видел Петра Петровича, который стоял ровно посередине платформы. x 5 15