ЛОГИЧЕСКАЯ СЕМИОТИКА — презентация
logo
ЛОГИЧЕСКАЯ СЕМИОТИКА
  • ЛОГИЧЕСКАЯ СЕМИОТИКА
  • ВИДЫ ЗНАКОВ
  • РАЗДЕЛЫ СЕМИОТИКИ
  • КЛАССИФИКАЦИИ ЯЗЫКОВ
  • КЛАССИФИКАЦИИ ЯЗЫКОВ
  • КЛАССИФИКАЦИИ ЯЗЫКОВ
  • ЗНАЧЕНИЕ И СМЫСЛ
  • ЗНАКИ И ИХ СМЫСЛЫ
  • ЗНАКИ И ИХ СМЫСЛЫ
  • ТЕОРИЯ СЕМАНТИЧЕСКИХ КАТЕГОРИЙ
  • ТЕОРИЯ СЕМАНТИЧЕСКИХ КАТЕГОРИЙ
  • ТЕОРИЯ СЕМАНТИЧЕСКИХ КАТЕГОРИЙ
  • ТЕОРИЯ СЕМАНТИЧЕСКИХ КАТЕГОРИЙ
  • ВИДЫ ФУНКЦИЙ
  • ВИДЫ ФУНКТОРОВ
  • ВИДЫ ФУНКТОРОВ
  • ПРИНЦИПЫ УПОТРЕБЛЕНИЯ ЯЗЫКОВЫХ ВЫРАЖЕНИЙ
  • ПРИНЦИПЫ УПОТРЕБЛЕНИЯ ЯЗЫКОВЫХ ВЫРАЖЕНИЙ
  • ПРИНЦИПЫ УПОТРЕБЛЕНИЯ ЯЗЫКОВЫХ ВЫРАЖЕНИЙ
  • ПРИНЦИПЫ УПОТРЕБЛЕНИЯ ЯЗЫКОВЫХ ВЫРАЖЕНИЙ
  • ПРИНЦИПЫ УПОТРЕБЛЕНИЯ ЯЗЫКОВЫХ ВЫРАЖЕНИЙ
  • ПРИНЦИПЫ УПОТРЕБЛЕНИЯ ЯЗЫКОВЫХ ВЫРАЖЕНИЙ
  • ПРИНЦИПЫ УПОТРЕБЛЕНИЯ ЯЗЫКОВЫХ ВЫРАЖЕНИЙ
  • ПРИНЦИПЫ УПОТРЕБЛЕНИЯ ЯЗЫКОВЫХ ВЫРАЖЕНИЙ
  • ПРИНЦИПЫ УПОТРЕБЛЕНИЯ ЯЗЫКОВЫХ ВЫРАЖЕНИЙ
  • ПРИНЦИПЫ УПОТРЕБЛЕНИЯ ЯЗЫКОВЫХ ВЫРАЖЕНИЙ
  • ПРИНЦИПЫ УПОТРЕБЛЕНИЯ ЯЗЫКОВЫХ ВЫРАЖЕНИЙ
  • ЛОГИЧЕСКИЕ ПАРАДОКСЫ
  • СЕМАНТИЧЕСКИЕ ПАРАДОКСЫ
  • ПАРАДОКС ЛЖЕЦА
  • ПАРАДОКС ЛЖЕЦА
  • ПАРАДОКС ЛЖЕЦА
  • ПАРАДОКС ЛЖЕЦА
  • ПАРАДОКС ЛЖЕЦА
  • ПАРАДОКС ЛЖЕЦА
  • ПАРАДОКС БЕРРИ
  • ПАРАДОКС БЕРРИ
  • ПАРАДОКС ГРЕЛЛИНГА
  • ПАРАДОКС ГРЕЛЛИНГА
  • ПАРАДОКСЫ ТЕОРИИ МНОЖЕСТВ
  • ПАРАДОКСЫ ТЕОРИИ МНОЖЕСТВ
  • ПАРАДОКСЫ ТЕОРИИ МНОЖЕСТВ
  • ПАРАДОКСЫ ТЕОРИИ МНОЖЕСТВ
  • ПАРАДОКСЫ ТЕОРИИ МНОЖЕСТВ
  • ПАРАДОКСЫ ТЕОРИИ МНОЖЕСТВ
  • ПАРАДОКСЫ ТЕОРИИ МНОЖЕСТВ
  • ПАРАДОКСЫ ТЕОРИИ МНОЖЕСТВ
  • ПАРАДОКСЫ ТЕОРИИ МНОЖЕСТВ
  • ПАРАДОКСЫ ТЕОРИИ МНОЖЕСТВ
  • ПАРАДОКСЫ ТЕОРИИ МНОЖЕСТВ
  • ПАРАДОКСЫ ТЕОРИИ МНОЖЕСТВ
  • ПАРАДОКСЫ ТЕОРИИ МНОЖЕСТВ
  • ПАРАДОКСЫ ТЕОРИИ МНОЖЕСТВ
  • ЛОГИЧЕСКАЯ СЕМИОТИКА
  • ПАРАДОКС НЕОЖИДАННОЙ КАЗНИ
  • ПАРАДОКС НЕОЖИДАННОЙ КАЗНИ
  • ПАРАДОКС НЕОЖИДАННОЙ КАЗНИ
  • ПАРАДОКС НЕОЖИДАННОЙ КАЗНИ
  • ПАРАДОКС НЕОЖИДАННОЙ КАЗНИ
  • ПАРАДОКС НЕОЖИДАННОЙ КАЗНИ
  • Парадокс Ньюкома
  • Парадокс сатанинской бутылки
1/62

Первый слайд презентации: ЛОГИЧЕСКАЯ СЕМИОТИКА

Язык – это знаковая система, которая является средством фиксации, хранения, передачи информации, средством выражения внутреннего мира человека. Таким образом, можно выделить следующие ф ункции языка : познавательная, информационная, коммуникативная, экспрессивная. Знак – это материальный объект, который для некоторого интерпретатора (пользователя языка) выступает в качестве представителя другого объекта. Система – некоторое множество элементов с заданными на них отношениями. Элементами языка являются знаки.

Изображение слайда

Слайд 2: ВИДЫ ЗНАКОВ

ЗНАКИ ИНДЕКСЫ ОБРАЗЫ СИГНАЛЫ СИМВОЛЫ (языковые) следствие подобие Ситуационная связь Только репрезентация Дым (на огонь) Фото (на человека) Слово (на объект) светофор

Изображение слайда

Слайд 3: РАЗДЕЛЫ СЕМИОТИКИ

СЕМИОТИКА СИНТАКСИС СЕМАНТИКА ПРАГМАТИКА Отношения между самими знаками (напр., правила построения выражений) Отношения между знаками и объектами (значениями знаков), используется категория «истина» Отношения между знаками и пользователями языка (напр., анализ зав-сти значения от контекста)

Изображение слайда

Слайд 4: КЛАССИФИКАЦИИ ЯЗЫКОВ

ЯЗЫКИ ЕСТЕСТВЕННЫЕ ИСКУССТВЕННЫЕ Формируются стихийно Имеют гибкую структуру Выразительно богаты (Универсальны) Создаются целенаправленно Имеют жесткую структуру Выразительно ограниченны (Узко специализированы)

Изображение слайда

Слайд 5: КЛАССИФИКАЦИИ ЯЗЫКОВ

ЯЗЫКИ ЯЗЫК-ОБЪЕКТ МЕТАЯЗЫК Язык, о котором идет речь Язык, с помощью которого (на котором) говорится о языке-объекте К b1-c3 Напр., язык шахматной нотации Русский язык «К b1-c3 » - выражение ЯШН

Изображение слайда

Слайд 6: КЛАССИФИКАЦИИ ЯЗЫКОВ

СЕМАНТИЧЕСКИ ЗАМКНУТЫЙ ЯЗЫК ЯЗЫК-ОБЪЕКТ МЕТАЯЗЫК Язык, о котором идет речь Язык, на котором говорится о языке-объекте Наполеон был испанцем Русский язык Русский язык «Наполеон был испанцем» - ложное предложение рус. языка = =

Изображение слайда

Слайд 7: ЗНАЧЕНИЕ И СМЫСЛ

ЗНАК ЗНАЧЕНИЕ (экстенсионал) СМЫСЛ (интенсионал) представляет выражает Смысл – это информация, которую несет знак о своем значении

Изображение слайда

Слайд 8: ЗНАКИ И ИХ СМЫСЛЫ

ЗНАКИ ОПИСАТЕЛЬНЫЕ НЕОПИСАТЕЛЬНЫЕ Имеют СОБСТВЕННЫЙ смысл Имеют лишь ПРИДАННЫЙ смысл, а СОБСТВЕННОГО не имеют самая длинная река в Европе Волга

Изображение слайда

Слайд 9: ЗНАКИ И ИХ СМЫСЛЫ

ЗНАКИ ОПИСАТЕЛЬНЫЕ НЕОПИСАТЕЛЬНЫЕ самая длинная река в Европе Волга Очевидно, что знаки могут иметь одно значение, но разные смыслы : ср. с аналогичным случаем для понятий – одинаковый объем, но разное содержание

Изображение слайда

ВЫРАЖЕНИЯ КАТЕГОРЕМАТИЧЕСКИЕ СИНКАТЕГОРЕМА- ТИЧЕСКИЕ Выражения разбиваются на различные категории в зависимости от типов их значений и выражаемых смыслов Н е имеющие определенных типов значений/смыслов : технические символы и к ним приравненные ( например, «и» как знак простого перечисления). ПРЕДЛО- ЖЕНИЯ ТЕРМИНЫ

Изображение слайда

ПРЕДЛОЖЕНИЯ ПОВЕСТВО- ВАТЕЛЬНЫЕ ПОБУДИ- ТЕЛЬНЫЕ ВОПРОСИ- ТЕЛЬНЫЕ По типам выражаемых смыслов СУЖДЕНИЕ (мысль о наличии/отсутствии некоторой ситуации) ИМПЕРАТИВ (мысль о необходимости (не) совершения некоторого действия) ВОПРОС (мысль о необходимости восполнения недостающей информации)

Изображение слайда

ТЕРМИНЫ ЛОГИЧЕСКИЕ выражают наиболее общие отношения между предметами и ситуациями имею т конкретное («содержательное») значение НЕЛОГИЧЕСКИЕ (ДЕСКРИПТИВНЫЕ) КВАНТОРЫ ПРОПОЗИЦ. СВЯЗКИ ВНУТРЕННИЕ СВЯЗКИ Все Ни один Некоторые не Или Если..то… Ни…ни…

Изображение слайда

НЕЛОГИЧЕСКИЕ ТЕРМИНЫ ИМЕНА знаки, обознач. отдельные индивиды и приравненные к ним ПРЕДИКАТОРЫ СОБСТВЕННЫЕ ОПИСАТЕЛЬНЫЕ ПРЕДМЕТНЫЕ ФУНКТОРЫ Волга; Юрий Гагарин Отношения :Севернее; Любит больше чем и т.д. Первый космонавт; Четное простое число знаки, обозначающие свойства и отношения (предм.-истинностные ф.) ОДНОМЕСТНЫЕ МНОГОМЕСТНЫЕ Свойства : Красный; Кошка знаки, обозначающие предметные функции МНОГОМЕСТНЫЕ ОДНОМЕСТНЫЕ Отец … ;  Перепад высот; +

Изображение слайда

Слайд 14: ВИДЫ ФУНКЦИЙ

Функция Тип аргумента Тип значения Знак функции Предметно-предметная Индивиды Индивиды Предметный функтор Предметно-истинностная Индивиды Истинностные значения (И\Л) Предикатор (Истинностно)- истинностная Истинностные значения (И\Л) Истинностные значения (И\Л) Пропозици-ональная связка

Изображение слайда

Слайд 15: ВИДЫ ФУНКТОРОВ

… (Мурка) – кошка. … (Москва) – столица. … (Тристан) любит … (Изольду). … (Маша) знает … (топологию) хуже, чем … (логику) … (Шарапов) встретил … (Левченко) у … (Горбатого) на …(хазе). КРИТЕРИЙ ПРЕДИКАТОРА : Сочленение n -местного предикатора с n именами дает высказывание Старшая кошка … (этого «кошатника»). Столица … (России). Расстояние от …(Земли) до … (Солнца). Сумма … (2) и … (5) КРИТЕРИЙ ПРЕДМЕТНОГО ФУНКТОРА : Сочленение n -местного пред метного функтора с n именами дает новое сложное (описательное) имя

Изображение слайда

Слайд 16: ВИДЫ ФУНКТОРОВ

КРИТЕРИЙ ПРЕДИКАТОРА : Сочленение n -местного предикатора с n именами дает высказывание КРИТЕРИЙ ПРЕДМЕТНОГО ФУНКТОРА : Сочленение n -местного пред метного функтора с n именами дает новое сложное (описательное) имя У Сократа есть дети, поэтому Сократ – отец. (П Р -1, одноместный предикатор ) Отец Сократа – каменотес. (ПФ-1, одноместный предметный функтор ) Софрониск – отец Сократа. (П Р -2, двухместный предикатор ) ПРИМЕР:

Изображение слайда

Слайд 17: ПРИНЦИПЫ УПОТРЕБЛЕНИЯ ЯЗЫКОВЫХ ВЫРАЖЕНИЙ

ПРИНЦИП ОДНОЗНАЧНОСТИ ПРИНЦИП ПРЕДМЕТНОСТИ ПРИНЦИП ВЗАИМОЗАМЕНИМОСТИ Готлоб Фреге (1848 – 1925)

Изображение слайда

Слайд 18: ПРИНЦИПЫ УПОТРЕБЛЕНИЯ ЯЗЫКОВЫХ ВЫРАЖЕНИЙ

ПРИНЦИП ОДНОЗНАЧНОСТИ О динаковые по написанию языковые выражения должны иметь одинаковые значения в рамках данного контекста. Во время выхода из окружения Штирлиц нес Ерунду. Он нес ее, Ерунду с большой буквы, уже два часа. Ему было невыносимо тяжело. Со времени их последней встречи агент ЧК Светлана Крымова по кличке «Ерунда» потяжелела на пятнадцать килограммов… Сколько человек у Вас работает? – Примерно один из десяти. Остальные валяют дурака. По полу, в перьях валяют, естественно…

Изображение слайда

Слайд 19: ПРИНЦИПЫ УПОТРЕБЛЕНИЯ ЯЗЫКОВЫХ ВЫРАЖЕНИЙ

а) Для того, чтобы нечто сказать о каком-то объекте, надо употребить знак этого объекта. б) Утверждения, содержащиеся в контексте, должны относиться не к самим знакам, а к их значениям. Зайцы потребляют морковь. Морковь включает мягкий знак. Значит, зайцы потребляют мягкие знаки вместе с морковью. ПРИНЦИП ПРЕДМЕТНОСТИ

Изображение слайда

Слайд 20: ПРИНЦИПЫ УПОТРЕБЛЕНИЯ ЯЗЫКОВЫХ ВЫРАЖЕНИЙ

а) Для того, чтобы нечто сказать о каком-то объекте, надо употребить знак этого объекта. б) Утверждения, содержащиеся в контексте, должны относиться не к самим знакам, а к их значениям. ПРИНЦИП ПРЕДМЕТНОСТИ Принцип предметности запрещает автонимное употребление знаков (представление ими самих себя). “ «Столица России» = «Москва» ” – ложь! “ Столица России = Москва ” – истина!

Изображение слайда

Слайд 21: ПРИНЦИПЫ УПОТРЕБЛЕНИЯ ЯЗЫКОВЫХ ВЫРАЖЕНИЙ

Если в некотором контексте заменить некоторые вхождения выражения а на выражение b с тем же значением, что и у а, то значение всего контекста не должно измениться Контексты, где правило эквивалентной замены может применяться неограниченно, называются экстенсиональными. Прочие – интенсиональными. ПРИНЦИП ВЗАИМОЗАМЕНИМОСТИ

Изображение слайда

Слайд 22: ПРИНЦИПЫ УПОТРЕБЛЕНИЯ ЯЗЫКОВЫХ ВЫРАЖЕНИЙ

Если в некотором контексте заменить некоторые вхождения выражения а на выражение b с тем же значением, что и у а, то значение всего контекста не должно измениться ПРИНЦИП ВЗАИМОЗАМЕНИМОСТИ Король Георг IV хотел узнать, является ли В. Скотт автором романа «Уэверли». Автор романа «Уэверли» = В. Скотт. Король Георг IV хотел узнать, является ли В. Скотт В. Скоттом.

Изображение слайда

Слайд 23: ПРИНЦИПЫ УПОТРЕБЛЕНИЯ ЯЗЫКОВЫХ ВЫРАЖЕНИЙ

Если в некотором контексте заменить некоторые вхождения выражения а на выражение b с тем же значением, что и у а, то значение всего контекста не должно измениться ПРИНЦИП ВЗАИМОЗАМЕНИМОСТИ Кеплер не знал, что число больших планет Солнечной системы больше 7. Число больших планет Солнечной системы = 8. Кеплер не знал, что 8 больше 7.

Изображение слайда

Слайд 24: ПРИНЦИПЫ УПОТРЕБЛЕНИЯ ЯЗЫКОВЫХ ВЫРАЖЕНИЙ

Если в некотором контексте заменить некоторые вхождения выражения а на выражение b с тем же значением, что и у а, то значение всего контекста не должно измениться ПРИНЦИП ВЗАИМОЗАМЕНИМОСТИ Необходимо, что 7 больше 6. 7 – число гномов у Белоснежки. Необходимо, чтобы число гномов у Белоснежки было больше 6.

Изображение слайда

Слайд 25: ПРИНЦИПЫ УПОТРЕБЛЕНИЯ ЯЗЫКОВЫХ ВЫРАЖЕНИЙ

Если в некотором контексте заменить некоторые вхождения выражения а на выражение b с тем же значением, что и у а, то значение всего контекста не должно измениться ПРИНЦИП ВЗАИМОЗАМЕНИМОСТИ Фокс знал, что написал под диктовку Шарапова текст. Текст, который Шарапов надиктовал Фоксу, был письмо м в банду Фокс сознавал, что писал под диктовку Шарапова письмо в свою банду

Изображение слайда

Слайд 26: ПРИНЦИПЫ УПОТРЕБЛЕНИЯ ЯЗЫКОВЫХ ВЫРАЖЕНИЙ

Если в некотором контексте заменить некоторые вхождения выражения а на выражение b с тем же значением, что и у а, то значение всего контекста не должно измениться ПРИНЦИП ВЗАИМОЗАМЕНИМОСТИ Поиски Шлиманом местоположения Трои (непустое имя) Местоположение Трои – холм Гиссарлык (тождество) Поиски Шлиманом холма Гиссарлык (пустое имя)

Изображение слайда

Слайд 27: ПРИНЦИПЫ УПОТРЕБЛЕНИЯ ЯЗЫКОВЫХ ВЫРАЖЕНИЙ

Если в некотором контексте заменить некоторые вхождения выражения а на выражение b с тем же значением, что и у а, то значение всего контекста не должно измениться ПРИНЦИП ВЗАИМОЗАМЕНИМОСТИ Антиномия отношения именования – ситуация несохранения значения контекста при применени и правила эквивалентной замены.

Изображение слайда

Слайд 28: ЛОГИЧЕСКИЕ ПАРАДОКСЫ

ЛОГИЧЕСКИЕ ПАРАДОКСЫ СЕМАНТИЧЕСКИЕ СИНТАКСИЧЕСКИЕ (П. теории множеств) Связаны с понятиями истинности, выразимости, определимости и т.д. Получаются в результате чисто формальных выводов в аксиоматических системах (типа теории множеств) Это весьма условное разделение предложил Ф. Рамсей

Изображение слайда

Слайд 29: СЕМАНТИЧЕСКИЕ ПАРАДОКСЫ

СЕМАНТИЧЕСКИЕ ПАРАДОКСЫ ПАРАДОКС ЛЖЕЦА ПАРАДОКС ГРЕЛЛИНГА- НЕЛЬСОНА ПАРАДОКС РИШАРА ПАРАДОКС БЕРРИ истинность выразимость определимость выразимость обозначение

Изображение слайда

Слайд 30: ПАРАДОКС ЛЖЕЦА

ДАННОЕ ПРЕДЛОЖЕНИЕ ЛОЖНО ИСТИНА ЛОЖЬ Оно действительно ложно ПРОТИВОРЕЧИЕ В действительности оно не ложно ПРОТИВОРЕЧИЕ ПРОТИВОРЕЧИЕ Эвбулид

Изображение слайда

Слайд 31: ПАРАДОКС ЛЖЕЦА

«ВСЕ КРИТЯНЕ ЛГУТ» (сказано критянином) ИСТИНА ЛОЖЬ Все критяне лгут, в т.ч. Эпименид ПРОТИВОРЕЧИЕ Не все критяне лгут На о. Крит, кроме Эпименида, живет кто-то, кто говорит правду Эпименид Некоторые критяне говорят правду

Изображение слайда

Слайд 32: ПАРАДОКС ЛЖЕЦА

«ВСЕ КРИТЯНЕ ЛГУТ» (сказано критянином) ИСТИНА ЛОЖЬ Все критяне лгут, в т.ч. Эпименид ПРОТИВОРЕЧИЕ Не все критяне лгут НЕТ ПРОТИВОРЕЧИЯ Эпименид и критяне Некоторые критяне говорят правду

Изображение слайда

Слайд 33: ПАРАДОКС ЛЖЕЦА

«ВСЕ КРИТЯНЕ ЛГУТ» (сказано ЕДИНСТВЕННЫМ критянином) ИСТИНА ЛОЖЬ Все критяне лгут, в т.ч. Эпименид ПРОТИВОРЕЧИЕ Не все критяне лгут Некоторые критяне говорят правду ПРОТИВОРЕЧИЕ (других нет) ПРОТИВОРЕЧИЕ

Изображение слайда

Слайд 34: ПАРАДОКС ЛЖЕЦА

Сократ: То, что ска жет Платон, – истина. Платон: То, что сказал Сократ – ложь. Сократ говорит правду Сократ солгал Платон сказал правду Сократ солгал Платон солгал Сократ не солгал ПРОТИВОРЕЧИЕ ПРОТИВОРЕЧИЕ ПРОТИВОРЕЧИЕ

Изображение слайда

Слайд 35: ПАРАДОКС ЛЖЕЦА

Таня: Я существую Настя : Я тоже существую Кирилл Авенирович : Как минимум, одно из этих трех утверждений ложно КА лжет Ложных суждений нет КА сказал правду Ложные суждения есть, но к ним не относится фраза КА Либо Таня не существует, либо Настя, либо они не существуют обе вместе ПРОТИВОРЕЧИЕ

Изображение слайда

Слайд 36: ПАРАДОКС БЕРРИ

«Наименьшее натуральное число, которое нельзя определить выражением, состоящим менее, чем из двадцати слов » Данное выражение определенным способом (через выражение языка) определяет некоторое натуральное число Числа можно выражать языковыми конструкциями (например, «двести тридцать»). Для записи некоторых чисел потребуются выражения, содержащие больше двадцати слов. Среди таких числе есть наименьшее (как число 12 2 наименьшее из тех, для записи которых требуется больше двух слов). Х:

Изображение слайда

Слайд 37: ПАРАДОКС БЕРРИ

«Наименьшее натуральное число, которое нельзя определить выражением, состоящим менее, чем из двадцати слов » Оно определяет его выражением, состоящим из 13 слов Существует число, одновременно неопределимое через выражение языка некоторого вида (по дефиниции числа) и определимое через такое выражение (через описание Х) Данное выражение определенным способом (через выражение языка) определяет некоторое натуральное число Х:

Изображение слайда

Слайд 38: ПАРАДОКС ГРЕЛЛИНГА

ПРИЛАГАТЕЛЬНЫЕ АВТОЛОГИЧЕСКИЕ ГЕТЕРОЛОГИЧЕСКИЕ Обладают сами свойством, на которое указывают Не обладают сами свойством, на которое указывают многосложный русский односложный английский

Изображение слайда

Слайд 39: ПАРАДОКС ГРЕЛЛИНГА

«ГЕТЕРОЛОГИЧЕСКИЙ» Автологическое Гетерологическое Обладает указанным свойством Не обладает указанным свойством ПРОТИВОРЕЧИЕ Гетерологическое Автологическое ПРОТИВОРЕЧИЕ

Изображение слайда

Слайд 40: ПАРАДОКСЫ ТЕОРИИ МНОЖЕСТВ

ПАРАДОКС КАНТОРА Георг Кантор С каждым множеством связана такая характеристика, как его мощность. Приближенно это может быть охарактеризовано как число элементов множества. Мощности множества Х (состоящего из пяти берез) и множества Y (состоящего из пяти коров) совпадают, так как можно к каждой березе привязать по одной корове, и не останется коров, не привязанных ни к одной березе.

Изображение слайда

Слайд 41: ПАРАДОКСЫ ТЕОРИИ МНОЖЕСТВ

ПАРАДОКС КАНТОРА Георг Кантор Если все-таки останутся лишние коровы, после того, как оказалась занятой какой-нибудь коровой каждая береза, говорят, что мощность множества коров больше, чем мощность множества берез. Очевидно, что два множества имеют одинаковую мощность, если их можно поставить друг с другом в одно-однозначное соответствие.

Изображение слайда

Слайд 42: ПАРАДОКСЫ ТЕОРИИ МНОЖЕСТВ

ПАРАДОКС КАНТОРА Георг Кантор Понятие мощности можно распространить и на бесконечные множества, так сказать, « численно измерить бесконечность ». Очевидно, что по любому множеству можно образовать новое множество, а именно множество всех его подмножеств.

Изображение слайда

Слайд 43: ПАРАДОКСЫ ТЕОРИИ МНОЖЕСТВ

ПАРАДОКС КАНТОРА Георг Кантор Очевидно, что по любому множеству можно образовать новое множество, а именно множество всех его подмножеств. Пусть Х = {А, В} Тогда Х * = { {А}, {В}, {А, В},  } так как {А}  {А, В}, { В }  {А, В}, {А,В }  {А, В},   {А, В}

Изображение слайда

Слайд 44: ПАРАДОКСЫ ТЕОРИИ МНОЖЕСТВ

ПАРАДОКС КАНТОРА Георг Кантор Пусть Х =  Тогда Х * = {  }, т.е. непустое множество так как   {  } Так же «очевидно», что мощность Х * всегда больше, чем мощность Х, и равна 2 М (Х), где М (Х) – мощность Х.

Изображение слайда

Слайд 45: ПАРАДОКСЫ ТЕОРИИ МНОЖЕСТВ

ПАРАДОКС КАНТОРА Георг Кантор М ощность Х * всегда больше, чем мощность Х, и равна 2 М (Х), где М (Х) – мощность Х. Докажем это утверждение для бесконечных множеств

Изображение слайда

Слайд 46: ПАРАДОКСЫ ТЕОРИИ МНОЖЕСТВ

ПАРАДОКС КАНТОРА Пусть все бесконечные множества имеют одинаковую мощность, т.е. их можно поставить в ООС с множеством всех их подмножеств. Назовем элемент исходного множества Х «синим», если он входит в то подмножество, которое поставлено ему в соответствие, и «красным», если не входит. Рассмотрим подмножество «красных» элементов Х. Оно не может быть поставлено в соответствие ни «синему» элементу, ни «красному».

Изображение слайда

Слайд 47: ПАРАДОКСЫ ТЕОРИИ МНОЖЕСТВ

ПАРАДОКС КАНТОРА Георг Кантор Но если Х – множество всех множеств, « максимальное множество », то его мощность наибольшая и не может быть меньше мощности никакого другого множества, даже множества все своих подмножеств, потому что и его оно ( Х ) содержит в себе в качестве своей собственной части, ведь оно множество ВСЕХ МНОЖЕСТВ. М (Х)  М (Х*) – по теореме Кантора М (Х) > М (Х*) – так как Х – максимальное множество

Изображение слайда

Слайд 48: ПАРАДОКСЫ ТЕОРИИ МНОЖЕСТВ

ИЕРАРХИЯ АЛЕФОВ Георг Кантор Каких чисел больше – целых положительных или целых положительных нечетных? Целых или натуральных? Рациональных или целых? Ответ удивителен – ПОРОВНУ!!! (В указанном смысле термина «мощность»). 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 –7 –6 –5 –4 –3 –2 –1 0 1 2 3 4 5 6 15 13 11 9 7 5 3 1 2 4 6 8 10 12

Изображение слайда

Слайд 49: ПАРАДОКСЫ ТЕОРИИ МНОЖЕСТВ

ИЕРАРХИЯ АЛЕФОВ Георг Кантор Множества, которые можно поставить в ООС со множеством натуральных чисел, по понятным причинам называют СЧЕТНЫМИ множествами. Их мощность считается равной трансфинитному числу числу алеф-нуль  0. Из теоремы Кантора следует, что множество всех подмножеств множества с мощностью алеф-нуль будет иметь б Ó льшую мощность, а именно мощность 2 0. Такое трансфинитное число обозначается  1 ( при принятии гипотезы континуума).

Изображение слайда

Слайд 50: ПАРАДОКСЫ ТЕОРИИ МНОЖЕСТВ

ИЕРАРХИЯ АЛЕФОВ Георг Кантор Можно показать, что мощность 2 0 имеет множество всех действительных чисел (так называемая мощность континуума – множества «точек на отрезке от 0 до 1»). Очевидно, что мощность множества всех его подмножеств равна 2 1 =  2. (опять-таки при принятии теперь уже обобщенной гипотезы континуума). Такую мощность имеет множество всех одноместных арифметических функций.

Изображение слайда

Слайд 51: ПАРАДОКСЫ ТЕОРИИ МНОЖЕСТВ

ИЕРАРХИЯ АЛЕФОВ Георг Кантор Но пока не удалось обнаружить никакого конкретного множества, мощность которого была бы равна трансфинитному числу алеф-три. «Мы оказываемся в положении дикаря, у которого множество детей, но который умеет считать только до трех». Таким образом, б есконечности бывают разные. Бесконечные множества образуют бесконечную «иерархию алефов»…

Изображение слайда

Слайд 52: ПАРАДОКСЫ ТЕОРИИ МНОЖЕСТВ

ПАРАДОКС РАССЕЛА Бертран Рассел Кажется очевидным, что по любому (непротиворечивому) свойству можно образовать множество тех и только тех объектов, которые обладают этим свойством. ( Аксиома свертывания в теории множеств: для всякого свойства Р и объекта х существует множество А такое, что х есть элемент А тогда и только тогда, когда х есть Р). Однако, это не так.

Изображение слайда

Слайд 53: ПАРАДОКСЫ ТЕОРИИ МНОЖЕСТВ

МНОЖЕСТВА НОРМАЛЬНЫЕ НЕНОРМАЛЬНЫЕ Не включают себя в качестве своего элемента Включают себя в качестве своего элемента Множество коров Множество четных чисел Множество двухэлементных множеств Множество всех множеств

Изображение слайда

Слайд 54

МНОЖЕСТВО всех нормальных множеств НОРМАЛЬНОЕ НЕНОРМАЛЬНОЕ Не включает себя (как нормальное по Df. ) Включает себя (т.к. включает все нормальные множества) ПРОТИВОРЕЧИЕ Включает себя (как ненормальное по Df. ) Не включает себя (т.к. включает только нормальные множества) ПРОТИВОРЕЧИЕ

Изображение слайда

Слайд 55: ПАРАДОКС НЕОЖИДАННОЙ КАЗНИ

У. Куайн (1908 – 2000) Прокурор : Ну, Джонс, пришел тебе конец! Сегодня последний в твоей жизни воскресный вечер. Тебя казнят в один из дней на следующей неделе. Но в какой именно, ты узнаешь лишь в тот момент, когда за тобой однажды утром придет палач. Как тебе известно, казни происходят в нашей тюрьме с 10 до 12 ч. утра.

Изображение слайда

Слайд 56: ПАРАДОКС НЕОЖИДАННОЙ КАЗНИ

У. Куайн (1908 – 2000) Прокурор : Это будет казнь врасплох. Ну а если мне не удастся выполнить это свое обещание, тебя отпустят вечером в следующее воскресенье. Адвокат : Прокурор идиот! Теперь, Джонс, твое дело в шляпе. Через неделю ты будешь свободен! Джонс: Как так? ПАРАДОКС НЕОЖИДАННОЙ КАЗНИ

Изображение слайда

Слайд 57: ПАРАДОКС НЕОЖИДАННОЙ КАЗНИ

У. Куайн (1908 – 2000) ПАРАДОКС НЕОЖИДАННОЙ КАЗНИ Адвокат : В самом деле, если казнь будет назначена на воскресенье, то ты узна ешь об этом уже накануне вечером. Поэтому т е б я не могут казнить в воскресенье. В субботу т е б я тоже не могут казнить, потому что вечером в пятницу ты буд ешь рассуждать так.

Изображение слайда

Слайд 58: ПАРАДОКС НЕОЖИДАННОЙ КАЗНИ

У. Куайн (1908 – 2000) ПАРАДОКС НЕОЖИДАННОЙ КАЗНИ Адвокат : « В воскресенье, по доказанному ранее, казни быть не может. Значит, она должна быть завтра, в субботу. Но это значит, что я знаю об этом уже сегодня, что противоречит условию прокурора. Поэтому и суббота отпадает ». А дальше п ользу емся методом математической индукции.

Изображение слайда

Слайд 59: ПАРАДОКС НЕОЖИДАННОЙ КАЗНИ

У. Куайн (1908 – 2000) ПАРАДОКС НЕОЖИДАННОЙ КАЗНИ Адвокат : В четверг вечером ты, отбросив воскресенье и субботу (в силу предыдущего доказательства), прид ешь к выводу, что казнь будет в пятницу. Значит, ее в пятницу не может быть. Так ты отброси ш ь и четверг, и среду, и вторник, и завтрашний понедельник. Казнь вообще неосуществима на таких условиях!

Изображение слайда

Слайд 60: ПАРАДОКС НЕОЖИДАННОЙ КАЗНИ

У. Куайн (1908 – 2000) ПАРАДОКС НЕОЖИДАННОЙ КАЗНИ Джонс : Что ж, убедительно. Теперь можно и расслабиться… Палач ( заходя в камеру Джонса в четверг в 11 часов утра ): Собирайся, парень. Вещи можно оставить… Где ошибка в рассуждениях адвоката, стоившая жизни Джонсу? Или он в любом случае был бы казнен, даже если бы «не расслабился»?

Изображение слайда

Слайд 61: Парадокс Ньюкома

Изображение слайда

Последний слайд презентации: ЛОГИЧЕСКАЯ СЕМИОТИКА: Парадокс сатанинской бутылки

Изображение слайда

Похожие презентации