Взаимное пересечение поверхностей — презентация
logo
Взаимное пересечение поверхностей
  • Взаимное пересечение поверхностей
  • Взаимное пересечение поверхностей
  • Взаимное пересечение поверхностей
  • Взаимное пересечение поверхностей
  • Взаимное пересечение поверхностей
  • Взаимное пересечение поверхностей
  • Взаимное пересечение поверхностей
  • Взаимное пересечение поверхностей
  • Взаимное пересечение поверхностей
  • Взаимное пересечение поверхностей
  • Взаимное пересечение поверхностей
  • Взаимное пересечение поверхностей
  • Взаимное пересечение поверхностей
  • Взаимное пересечение поверхностей
  • Взаимное пересечение поверхностей
  • Взаимное пересечение поверхностей
  • Взаимное пересечение поверхностей
  • Взаимное пересечение поверхностей
  • Взаимное пересечение поверхностей
  • Взаимное пересечение поверхностей
  • Взаимное пересечение поверхностей
  • Взаимное пересечение поверхностей
  • Взаимное пересечение поверхностей
  • Взаимное пересечение поверхностей
  • Взаимное пересечение поверхностей
  • Взаимное пересечение поверхностей
  • Взаимное пересечение поверхностей
  • Взаимное пересечение поверхностей
  • Взаимное пересечение поверхностей
  • Взаимное пересечение поверхностей
  • Взаимное пересечение поверхностей
  • Взаимное пересечение поверхностей
  • Взаимное пересечение поверхностей
  • Взаимное пересечение поверхностей
  • Взаимное пересечение поверхностей
  • Взаимное пересечение поверхностей
  • Взаимное пересечение поверхностей
  • Взаимное пересечение поверхностей
  • Взаимное пересечение поверхностей
  • Взаимное пересечение поверхностей
  • Метод вспомогательных секущих плоскостей
  • Метод вспомогательных секущих плоскостей
  • Взаимное пересечение поверхностей
  • Частные случаи пересечения поверхностей вращения
  • Частные случаи пересечения поверхностей вращения
  • Частные случаи пересечения поверхностей вращения
  • Частные случаи пересечения поверхностей вращения
  • Взаимное пересечение поверхностей
  • Алгоритм решения задач по построению линии пересечения поверхностей методом вспомогательных концентрических сфер
  • Взаимное пересечение поверхностей
  • Метод вспомогательных концентрических сфер
  • Метод вспомогательных концентрических сфер
  • ВЫВОДЫ
  • Контрольные вопросы
  • Контрольные вопросы
  • Построить линию пересечения заданных поверхностей (метод сфер)
1/56

Первый слайд презентации: Взаимное пересечение поверхностей

Метод вспомогательных секущих плоскостей

Изображение слайда

Слайд 2

При пересечении поверхностей получается линия, все точки которой принадлежат обеим пересекающимся поверхностям – линия пересечения. Характер линии зависит от вида поверхностей: пересечение многогранников дает ломаную линию; пересечение многогранника и кривой поверхности дает сочетание плоских кривых линий (параболу, гиперболу, эллипс и т.д.); пересечение двух кривых поверхностей дает пространственную кривую линию.

Изображение слайда

Слайд 3

Алгоритм решения задач Анализ поверхностей. Определить наличие проецирующей поверхности. В этом случае на одной из плоскостей проекций уже имеется одна проекция линии пересечения. Нахождение характерных точек. Проведение вспомогательной секущей плоскости, которая выбирается из условия получения в сечении простых геометрических фигур – окружностей, треугольников, прямоугольников.

Изображение слайда

Слайд 4

4 Построение двух линий пересечения обеих поверхностей вспомогательной секущей плоскостью. Определение точек пересечения двух построенных линий. Повторение пунктов 3, 4, 5 – n раз. Соединение полученных точек пересечения линией. Определение видимости линий пересечения и линий заданных поверхностей.

Изображение слайда

Слайд 5

5

Изображение слайда

Слайд 6

6

Изображение слайда

Слайд 7

7

Изображение слайда

Слайд 8

8

Изображение слайда

Слайд 9

9

Изображение слайда

Слайд 10

10

Изображение слайда

Слайд 11

11

Изображение слайда

Слайд 12

12

Изображение слайда

Слайд 13

13

Изображение слайда

Слайд 14

14

Изображение слайда

Слайд 15

15

Изображение слайда

Слайд 16

16

Изображение слайда

Слайд 17

17

Изображение слайда

Слайд 18

18

Изображение слайда

Слайд 19

19

Изображение слайда

Слайд 20

20

Изображение слайда

Слайд 21

21

Изображение слайда

Слайд 22

22

Изображение слайда

Слайд 23

23

Изображение слайда

Слайд 24

24

Изображение слайда

Слайд 25

25

Изображение слайда

Слайд 26

26

Изображение слайда

Слайд 27

27

Изображение слайда

Слайд 28

28

Изображение слайда

Слайд 29

29

Изображение слайда

Слайд 30

30

Изображение слайда

Слайд 31

31

Изображение слайда

Слайд 32

32

Изображение слайда

Слайд 33

33

Изображение слайда

Слайд 34

34

Изображение слайда

Слайд 35

35

Изображение слайда

Слайд 36

36

Изображение слайда

Слайд 37

37

Изображение слайда

Слайд 38

38

Изображение слайда

Слайд 39

39

Изображение слайда

Слайд 40

40

Изображение слайда

Дано: цилиндр и конус. Конус: Ø к=80 мм; Нк=80 мм. Цилиндр: Ø ц=80 мм; Нц=90 мм. Расстояние между осями 20 мм.

Изображение слайда

Дано: конус и сфера. Сфера: R =45 мм. Конус: Ø к=80 мм; Нк=70 мм. Построить линию пересечения поверхностей. Определить участки видимости линий. Расстояние между осями 20 мм.

Изображение слайда

Слайд 43

43 Взаимное пересечение поверхностей Метод секущих сфер

Изображение слайда

44 Частные случаи пересечения поверхностей вращения Соосные поверхности - поверхности вращения, имеющие общую ось вращения. Все линии пересечения - окружности. На плоскость проекций, параллельную осям вращения, они проецируются в виде отрезка прямой линии, соединяющего точки пересечения очерковых образующих.

Изображение слайда

Слайд 45: Частные случаи пересечения поверхностей вращения

45 Частные случаи пересечения поверхностей вращения Линии пересечения – окружности проецируются в прямые, называемые параллели

Изображение слайда

Слайд 46: Частные случаи пересечения поверхностей вращения

46 Частные случаи пересечения поверхностей вращения Теорема Монжа: две поверхности вращения, описанные вокруг третьей, пересекаются между собой по двум кривым второго порядка, которые проецируются на плоскость, параллельную осям вращения в виде прямолинейных отрезков, соединяющих точки пересечения очерковых образующих.

Изображение слайда

Слайд 47: Частные случаи пересечения поверхностей вращения

47 Частные случаи пересечения поверхностей вращения

Изображение слайда

Слайд 48

48 Применение метода концентрических сфер возможно при выполнении следующих условий : Обе поверхности вращения. Оси поверхностей пересекаются. Поверхности имеют плоскость симметрии.

Изображение слайда

Слайд 49: Алгоритм решения задач по построению линии пересечения поверхностей методом вспомогательных концентрических сфер

49 Алгоритм решения задач по построению линии пересечения поверхностей методом вспомогательных концентрических сфер Провести анализ поверхностей : обе поверхности вращения ; оси поверхностей пересекаются поверхности имеют плоскость симметрии. 2. Определить центр вспомогательных концентрических сфер - это точка пересечения осей вращения. 3. Определить радиус минимальной вписанной сферы – Rmin. (Сфера данного радиуса должна касаться большего из тел и пересекать меньшее из тел).

Изображение слайда

Слайд 50

50 4. Построить параллель для сферы ( Rmin.) касающейся с большей поверхностью и параллель (или параллели) для сферы ( Rmin.) пересекающей меньшую поверхность. 5. Найти точки пересечения построенных параллелей, которые принадлежат линии пересечения заданных поверхностей. 6. Построить несколько сфер большего радиуса Rmin< R>Rmax. 7.Определить параллели и точки их пересечения. 8. Соединить точки плавной линией. 9.Определить видимость линий выполненного изображения.

Изображение слайда

Слайд 51: Метод вспомогательных концентрических сфер

51 Метод вспомогательных концентрических сфер

Изображение слайда

Слайд 52: Метод вспомогательных концентрических сфер

52 Метод вспомогательных концентрических сфер

Изображение слайда

Слайд 53: ВЫВОДЫ

53 ВЫВОДЫ Метод концентрических сфер позволяет в одной проекции построить линию пересечения двух поверхностей. Область использования этого метода ограничена следующими требованиями: - обе поверхности должны быть поверхностями вращения; - их оси должны пересекаться; - их оси должны лежать в плоскости параллельной плоскости проекций.

Изображение слайда

Слайд 54: Контрольные вопросы

54 Контрольные вопросы Какие Вы знаете частные случаи пересечения поверхностей вращения? Как строится линия пересечения в этих случаях? Для чего служит метод концентрических сфер?

Изображение слайда

Слайд 55: Контрольные вопросы

55 Контрольные вопросы Достоинства метода концентрических сфер. Область использования метода. Какой радиус сферы называется минимальным? Какие точки линии пересечения являются характерными?

Изображение слайда

Последний слайд презентации: Взаимное пересечение поверхностей: Построить линию пересечения заданных поверхностей (метод сфер)

56 Построить линию пересечения заданных поверхностей (метод сфер)

Изображение слайда

Похожие презентации